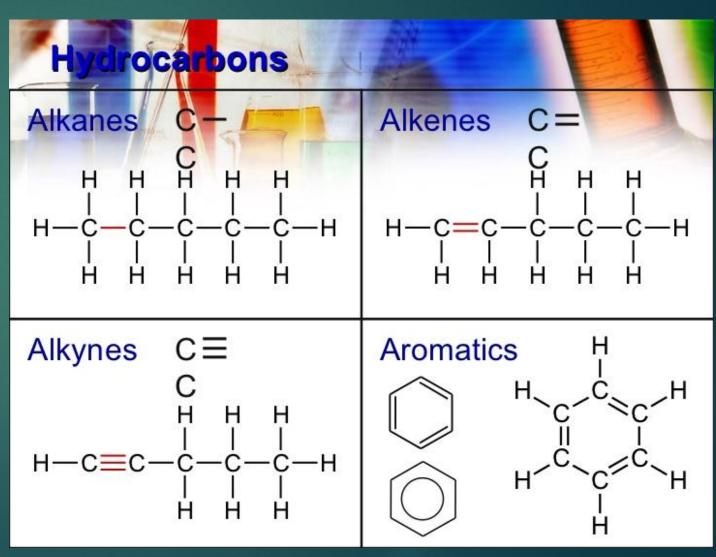
Alkynes

GROUP MEMERS:

GARAPOV ARMAN

DOBREDNEV GLEB


ZHUMABAYEV YERNUR

ORAZBAEV ANUAR

TOYGHAMBAEV AKZHOL

Alkynes(or acetylenes)

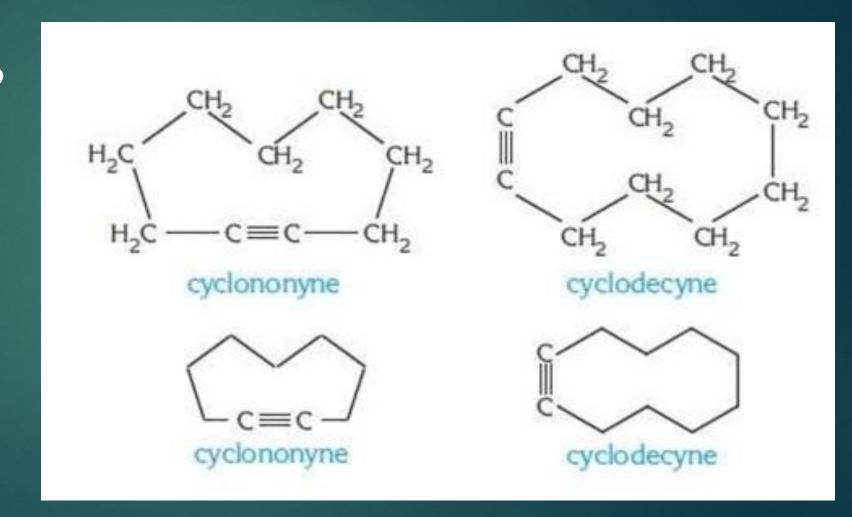
- Hydrocarbons that contain the carboncarbon triple bond -C (triple)C- are called alkynes
- ► General formula: CnH2n-2 (n>1)
- Alkynes are named by using the –yne suffix in place of the –ane suffix of alkanes.
- Each triple bond contains one sigma (σ) and two pi (π) bonds.
- Because of the π bonds in their structure alkynes are unsaturated hydrocarbons.

NOMENCLATURE

- ► The naming of alkynes is similar to that of other hydrocarbons.
- Alkynes may contain more than one triple bond.
- Alkenynes

CH₃

CH =
2
CH - 4 CH₃


4-chloro-4-methyl-2-pentyne 3,3-dibromo-4-methyl-1-hexyne

1
CH \equiv 2 C 3 CE \equiv 4 CH \equiv 2 C 3 CE \equiv 4 CH \equiv 2 C 3 CE \equiv 4 CH \equiv 4 C

$$^{1}\text{CH}_{2} = ^{2}\text{CH} - ^{3}\text{C} \equiv ^{4}\text{CH}$$
 $^{1}\text{CH}_{3} - ^{2}\text{CH} = ^{3}\text{CH} - ^{4}\text{C} \equiv ^{5}\text{CH}_{3}$
 $^{1}\text{- butene - 3 - yne}$
 $^{2}\text{- pentene - 4 - yne}$
double bond triple bond double bond triple bond

CYCLOALKYNES

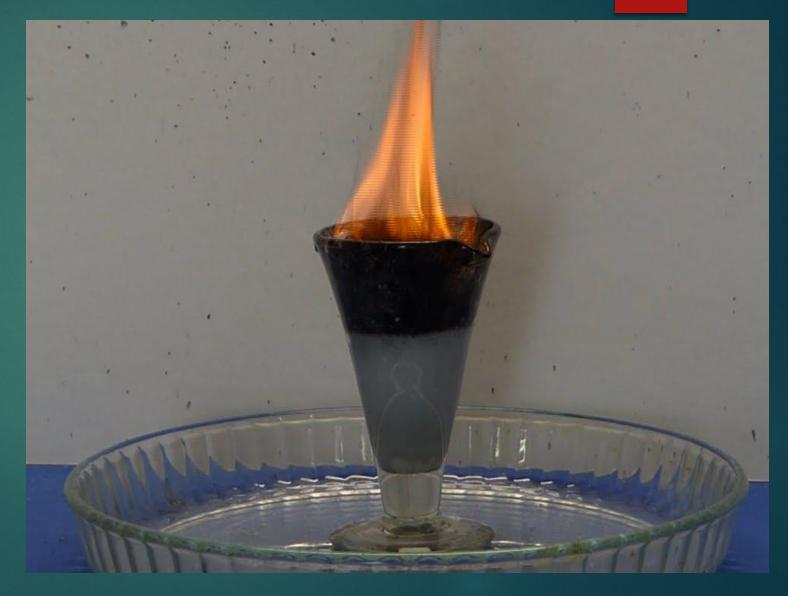
- Alkynes may be cyclo compounds (cycloalkynes).
- The simplest stable cycloalkyne at room temperature is cyclononyne.

ISOMERISM

- The triple bond may be in different locations in an alkyne, so alkynes can exhibit structural isomerism.
- For the first two members of alkynes there is only one possible posifor bond, so for these cases there is no isomerism.
- Alkynes, alkadienes and cycloalkenes containing the same number of carbon atoms are isomers of each other.

Structural formula	Formula	Type of hydrocarbon	Name
H ₂ C — CH H ₂ C — CH	C₄H ₆	cycloalkene	cyclobutene
$CH_2 = C = CH - CH_3$	C ₄ H ₆	alkadiene	1,2-butadiene
$CH_2 = CH - CH = CH_2$	C ₄ H ₆	alkadiene	1,3-butadiene
$CH \equiv C - CH_2 - CH_3$	C ₄ H ₆	alkyne	1-butyne
$CH_3 - C \equiv C - CH_3$	C ₄ H ₆	alkyne	2-butyne

PHYSICAL PROPERTIES


Similar to alkanes, alkenes:

- Insoluble in water.BUT
- Soluble in organic solvents
- Density less than water

Name	Number of Carbon	Molecular Formula	Structural Formula
Ethyne	2	C ₂ H ₂	CH≡CH
Propyne	3	C ₃ H ₄	CH≡CCH ₃
Butyne	4	C ₄ H ₆	CH≡CCH ₂ CH ₃
Pentyne	5	C ₅ H ₈	CH≡C(CH ₂) ₂ CH ₃
Hexyne	6	C ₆ H ₁₀	CH≡C(CH ₂) ₃ CH ₃
Heptyne	7	C ₇ H ₁₂	CH≡C(CH ₂) ₄ CH ₃
Octyne	8	C ₈ H ₁₄	$CH \equiv C(CH_2)_5 CH_3$
Nonyne	9	C ₉ H ₁₆	CH≡C(CH ₂) ₆ CH ₃
Decyne	10	C ₁₀ H ₁₈	$CH \equiv C(CH_2)_7 CH_3$

CHEMICAL PROPERTIES

- Alkynes are unsaturated compounds and their chemical properties are similar to alkenes.
- Alkynes undergo combustion reactions and addition reactions, as alkenes do.
- In addition, alkynes undergo substitution reactions with metals.

COMBUSTION REACTIONS

Alkynes produce CO2 and H20 when they're burnt with a sufficient amount of oxigen. The general combustion reaction is:

$$C_nH_{2n-2} + (\frac{3n-1}{2})O_2 \longrightarrow nCO_2 + (n-1)H_2O$$

$$C_3H_4 + 4O_2 \longrightarrow 3CO_2 + 2H_2O$$

$$2C_4H_6 + 11O_2 \longrightarrow 8CO_2 + 6H_2O$$

ADDITION REACTIONS

- Addition reactions occur by breaking the π
 bonds of the triple bond. Hydrogen, halogens, hydrogen halides and water may give addition reactions with alkynes.
- ADDITION OF HYDROGEN :

Two hydrogen molecules are added to one triple bond using a nickel, platinum or palladium catalyst. Alkenes are the intermediate products.

$$CH \equiv CH + H_2 \xrightarrow{Ni, Pt} H C = C + H_2 \xrightarrow{Ni, Pt} H - C - C - H_1 + H_2 \xrightarrow{Ni, Pt} H - C - C - H_2 + H_2 \xrightarrow{Ni, Pt} H - C - C - C - H_3 + 2H_2 \xrightarrow{Ni, Pt} H - C - C - C - CH_3 + H_4 + H_5 \xrightarrow{Ni, Pt} H - H_6 + H_6 \xrightarrow{H_1} H_6 + H_7 \xrightarrow{H_2} H_7 \xrightarrow{Ni, Pt} H_7 \xrightarrow{H_3} H_7 \xrightarrow{H_4} H_7 \xrightarrow{H_4} H_7 \xrightarrow{H_5} H_7 \xrightarrow{H$$

PREPERATION OF ALKYNES

Alkynes can be synthesized from metallic acetlylides and alkyl halides.

BY THE REACTION OF METAL ACETYLIDES AND ALKYL HALIDES

$$CH \equiv C - Na + RX \longrightarrow CH \equiv C - R + NaX$$
sodium acetylide alkyl halide sodium halide

$$CH \equiv C - Na + CH_3CH_2CH_2CH_2Br \rightarrow CH_3CH_2CH_2C \equiv CH + NaBr$$

sodium acetylide 1-bromobutane 1-hexyne

ACETYLENE

Acetylene, the first member of the alkyne series, is one of the major chemicals used in industry.

Physical properties:

- Very light odor
- Colorless
- Soluble in water
- Soluble in acetone
- ► Boiling point -83* C
- Can be liquified at 1*C

Chemical properties:

- It burns with a bright flame
- Explodes at about 15 atm pressure

ALKYNYL GROUP

Alkynyl groups are formed from alkynes by removing one H atom. The most common alkynyl groups are ethynyl, 1-propynyl, and 1-butynyl

USES OF ALKYNES

- Histrionicotoxin
 toxic alkyne present in South American frogs
 used to make poison-tipped arrows
- Ichthyothereol
 highly toxic alkyne found in the leaves of a Brazilian herb
 used to kill fish
- Calicheamicin and Esperamicin
 extremely toxic to cells
 breaks double strand of DNA
 researchers are trying to use it to develop a cancer fighting drug
- Capillin natural plant fungicide