
Module 5:
JavaScript in Browser

D. Petin

07/2014

Agenda

▪JS in Browser

▪Events

▪Memory

▪Closure

[1]

[2]

[3]

[4]

JavaScript in Browser

JavaScript in Browser

BOM

window

DOM

Events

Description

How JavaScript communicates with the world?

In outline this mechanism works by next scenario: user
does something and this action is an event for browser.
JavaScript observes pages in the browser. And if event has

occurred, script will be activated.

[1]

Event handling

But JavaScript doesn't observe events by default. You
should specify to your code what events are interesting for
it.

There are 3 basic ways to subscribe to an event:

- inline in HTML

- using of onevent attribute

- using special methods

First and second ways are deprecated for present days.
Let's take a look at event handling in more details.

[1]

[2]

Inline handling

Imagine that we have some HTML-element, for example
<button> and we want to do some action when user clicks the
button.

<button onclick = “action();”> Demo </button>

First way: inline adding of JavaScript into HTML. If we use this
technique, we should update HTML-page and set some JS
code in onevent attribute of HTML-element.

Never use this way, because it influences HTML and JavaScript
simultaneously. So let's look at the next option!

[1]

[2]

Using of onevent attribute

btn.onclick = action;

The next way doesn't touch HTML. For adding event handler
you need to find an object that is a JavaScript model of
HTML-element.

For example, your button has id btn:

<button id = “btn”> Demo </button>

Where action is some function

defined as function action () { . . . }

Then desired object will be created automatically. Next you
can use an onclick property:

[1]

[2]

Proper ways

Previous way makes sense, but has some limitations. For
example you can not use more than one handler for one
event, because you set a function on onevent attribute
directly.

btn.addEventListener(“click”, action, false);

But this method doesn't work in IE. For IE you should use:

Next method helps solve this and some other problems:

btn.attachEvent(“onclick”, action);

[1]

[2]

Proper ways

btn.removeEventListener(“click”, action);

In IE:

Also, you can unsubscribe from any event. In W3C:

btn.detachEvent(“onclick”, action);

Interesting note

Why we refer to W3C if JavaScript syntax is specified by ECMA? Because
ECMA specifies only cross-platform part of language and does not describes
any API. The browser API is determined by W3C standards. It applies to
events, DOM, storages, etc.

[1]

[1]

Bubbling and Capturing

The third parameter of addEventListener is a phase of event
processing. There are 2 phases:

-bubbling (if parameter is ‘false’)

-capturing (if parameter is ‘true’).

W3C browsers supports both phases whereas in IE only bubbling
is supported.

<red>

 <green>

 <blue />

 </green>

</red>

For example:
There are three nested elements like <red>, <green> and <blue> (<div> or
something else). When event has occurred inside the element <blue> its
processing starts from top of DOM - window and moves to the target
element. After being processed in target element event will go back.

[1]

Bubbling and Capturing

Bubbling Capturing

<red>

 <green>

 <blue />

 </green>

</red>

[1]

[2][3]

Event object

For every event in the browser instance of Event object will be
created.

You can take it if you need. In W3C browsers this object will be
passed as a first parameter of event handler:

btn.addEventListener(“click”, action, false);

Where action was defined as:

function action (e) { . . . }

[1]

Event object

Event object is supported in IE, too, but it’s located in object
window and its name is event:

var e = window.event;

You have a possibility to use a cross-browser solution.:

function action (e) {

 e = e || window.event;
 . . .

}

[1]

[2]

Control of Default behavior

Sometimes a default scenario of event processing includes
some additional behavior: bubbling and capturing or
displaying context menu.

If you don't need a default behavior, you can cancel it. Use
object event and next methods for this purpose:

e.preventDefault();

e.stopPropagation(); for discarding bubbling and
capturing.

for aborting default browser
behavior.

.

[1]

[2]

Memory and Sandbox

Basic info

Free space in browser sandbox is allocated for each
variable in JavaScript.

Sandbox is a special part of memory that will be
managed by browser: JavaScript takes simplified and
secure access to "memory“, browser translates JS
commands and does all low-level work.

As a result memory, PC and user data has protection
from downloaded JavaScript malware.

Scope

The scope is a special JavaScript object which was
created by browser in the sandbox and used for storing
variables.

Each function in JavaScript has its own personal scope.
Scope is formed when a function is called and destroyed
after the function finishes.

This behavior helps to manage local variables
mechanism.

window object is a top-level scope for all default and
global variables.

Scope

window_scope = {
 test: function,
 a: 10,
 b: 20
};

test_scope = {
 b: 40
};

[1]

[2]

[3]

[41

var a = 10;

test();

function test () {

 a = 30;

 var b = 40;

}

var b = 20;

console.log(a, b);

Value-types and Reference-types

Unfortunately some objects are too large for scope. For
example string or function. There is simple division into
value-types and reference-types for this reason.

Value-types are stored in scope completely and for
reference-types only reference to their location is put
in scope. They themselves are located in place called
"memory heap".

String and all Objects are reference-types. Other data
types are stored in scope.

Memory cleaning

The basic idea of memory cleaning: when
function is finished, scope should be destroyed
and as a result all local variables should be
destroyed.

This will work for value-types.

As for reference-types: deleting the scope
destroys only reference. The object in heap
itself will be destroyed only when it becomes
unreachable.

Unreachable links

An object is considered unreachable if it is not
referenced from the client area of code.

Garbage collector is responsible for the cleanup of
unreachable objects.

It's a special utility that will launch automatically if
there isn’t enough space in the sandbox.

If an object has at least one reference it is still
reachable and will survive after memory cleaning.

Unreachable links

action_scope = {
 a: reference,
 b: reference
};

… somewhere in heap …

function action () {

 var a = new Point(10, 20),

 b = new Point(15, 50);

}

{x: 10, y: 20}

{x: 15, y: 50}

[1]

[2]

[3]

Closures

Closure

FYI: if scope is an object and it is not deleted it is still
reachable, isn't it?

Absolutely! This mechanism is called closure.

If you save at least one reference to scope, all its
content will survive after function finishing.

Example

function getPi () {

 var value = 3.14;

 return function () {
 return value;
 };

}

var pi = getPi();
. . .

L = 2*pi()*R;

[1]

[3]

[2]

