
Tensilica Xtensa
Tuan Huynh, Kevin Peek & Paul Shumate

CS 451 - Advanced Processor Architecture
November 15, 2005

Overview

■ Background
■ Changes in progress from Xtensa to

Xtensa LX
■ Automated Development Process
■ ISA
■ TIE Language
■ Benchmarks

Tensilica

■ Founded in 1997 in Santa Clara, California
by a group of engineers from Intel, SGI,
MIPS, and Synopsys to compete with ARC

■ Goal: To address application specific
microprocessor cores and software
development tools by designing the first
configurable and extensible processor
core

Why?

■ Embedded application problems with high
cost custom designs or low performance
(inefficiencient) processors

■ System on a Chip (SoC) challenge
◻ Traditionally solved using hardwired RTL

blocks

The Problem with RTL

■ Rapidly increasing
number of transistors
require more RTL blocks
on chip

■ Hardcoded RTL blocks
are not flexible

■ Hand-optimized for
application specific
purposes

Tensilica’s Solution

■ Xtensa
◻ Focusing on design through the processor,

and not through hardwired RTL

Xtensa

■ First appearing in 1999
■ 32-bit microprocessor core with a graphical configuration

interface and integrated tool chain
■ Designed from the start to be user customizable
■ Emphasizes instruction-set configurability as its primary

feature distinguishing it from other core offerings
■ Has revolutionized the System on a Chip (SoC)

challenge through out its development
■ Configurable and Extensible

Xtensa – In a Nutshell

■ Enables embedded system designers to build
better, more highly integrated products in
significantly less time

■ Can add specialized functions or instructions to
processor and have them recognized as “native”
by the entire software development took chain

■ Move to a higher level of abstraction by
designing with processors rather than RTL

Xtensa - Deliverables

■ Provided as synthesizable RTL cores
◻ Gate count range: 25,000 – 150,000+
◻ Increase in gates as customer adds

instructions or optional features
■ Software development tools

Xtensa – Verification Challenges

■ To extensively verify the configurable
processor to ensure each possible
configuration will be bug free

■ To enable the customer to rapidly integrate
the core while limiting support costs

Xtensa – Basic Architecture

■ 78 instructions
■ five-stage pipeline that supports

single-cycle execution
■ 1 - load/store model
■ 32-entry orthogonal register file
■ 32 optional extra registers

Xtensa – Basic Architecture

■ Processor Configuration
◻ Power Usage: 200mW, 0.25 μm, 1.5V
◻ Clock Speed: 170 MHz
◻ Cache:

■ 16 KB I-cache
■ 16 KB D-cache
■ Direct mapped

◻ 32 Registers (32-bits)
◻ Extensible via use of TIE instructions
◻ No Floating Point Processor
◻ Zero over head loops

Xtensa - ISA

■ Priorities used in ISA Development
◻ Code Size, Configurability, Processor Cost, Energy

Efficiency, Scalability, Features
■ ISA Influences

◻ MIPS
◻ IBM Power
◻ Sun SPARC
◻ ARM Thumb
◻ HP Playdoh
◻ DSPs

Xtensa III

■ With Virtual IP Group developed an MP3 audio
decoder for Tensilica's Xtensa configurable
microprocessor architecture. The decoder offers
hardware extensions and optimized code for
accelerating MP3 decoding

■ 32-bit floating point processing
■ 32x32-bit hardware multiplier
■ First Coprocessor interface

◻ Vectra DSP enhancements

Xtensa IV

■ Used white box verification methodology
for the original development

■ Includes 0-In Check and the CheckerWare
Library made by Mentor Graphics

■ Could repartition instructions up until point
of manufacturing

■ Support multiple processors in ASIC
■ 128-bit wide local memory interface

Xtensa V
■ 350MHz (synthesized), as small as 18K gates

(0.25mm2)
■ More flexible interfaces for multiple processors

◻ Write-back and write-through caches
◻ Enhanced Xtensa Local Memory Interface
◻ Shared data memories

■ More Automation
◻ Xtensa C/C++ Compiler & TIE Language improvements
◻ XT2000 Emulation kit

■ World’s fastest embedded core

Xtensa V – Performance Cost Timeline

Xtensa 6

■ Extremely fast customization path
■ Three major enhancements from Xtensa V

◻ Auto customize processor from C/C++ based
algorithm using XPRES Compiler

◻ 30% less power consumption
◻ Advanced security provisions in MMU-enabled

configurations

Xtensa LX

■ “Fastest processor core ever” – Tensilica
◻ I/O bandwidth, compute parallelism, and low-power

optimization equivalent to hand-optimized,
non-programmable, RTL-designed hardware blocks

◻ XPRES Compiler and automated process generator
◻ Uses Flexible Length Instruction Xtension (FLIX)
◻ Ideal for:

■ embedded processor control tasks
■ Compute-intensive datapath hardware tasks

Xtensa 6 Vs Xtensa LX

Xtensa LX

■ Strongest selling point is performance
■ DSP operations can be encapsulated

into custom instructions
■ High performance leads to power

savings
■ Custom instructions target a special

application

Xtensa LX Vs General Purpose

Xtensa LX – Traditional Limitations

■ 1 Operation / cycle
■ Load/Store overhead

Xtensa LX
■ Options:

◻ Extra load/store unit, wide interfaces, compound instructions
■ Up to 19 GB/sec of throughput

Xtensa LX – Highlights

■ Lower power usage
■ I/O throughput at RTL speeds
■ Outstanding computer performance
■ XPRES Compiler

Xtensa LX – Lower Power Useage

■ Automated the insertion of fine-grain
clock gating for every functional
element of the Xtensa LX processor
◻ This includes functions created by the

designer

◻ Direct I/O capability – like RTL

Outstanding Computing
Performance
■ Extensible using FLIX

(Flexible Length Instruction Xtensions)
◻ Similar to VLIW – but customizable to fit application

code’s needs
■ Significant improvement over competitors and

previous Xtensa Design
◻ DSP instructions formed using FLIX to be recognized

as native to entire development system

XPRES Compiler

■ Powerful synthesis tool
◻ Creates tailored processor descriptions
◻ Run on native C/C++ code

Automated Development

■ Clients log into website
◻ Accessing Process Generator

■ Builds a model in RTL Verilog or VHDL
◻ Sends result via internet to client’s site

■ Also receive:
◻ Preconfigured synthesis scripts, test benches, and

software-development tools
■ Software tools include:

◻ Assembler, C/C++ compiler, linker, debugger, and
instruction-set simulator already modified to match the
hardware configuration

Automated Development

■ Create special instructions described and
written in TIE

■ TIE semantics allow system to modify
software-development tools

■ Integrates changes into processor design

■ Compile with synthesis tool – test – order

Xtensa LX – Basic Architecture

■ Processor Configuration
◻ Power Usage: 76 μW/MHz , 47 μW/MHz (5 and 7 stage

pipeline)
◻ Clock Speed: 350 MHz, 400 MHz (5 and 7 stage pipeline)
◻ Cache:

■ up to 32 KB and 1,2,3,4 way set associative cache
◻ 64 general purpose physical registers (32-bits)
◻ 6 special purpose registers
◻ Extensible via use of TIE and FLIX instructions
◻ Zero over head loops

Xtensa LX Architecture

■ 32-bit ALU
■ 1 or 2 Load/Store Model
■ Registers

◻ 32-bit general purpose register file
◻ 32-bit program counter
◻ 16 optional 1-bit boolean registers
◻ 16 optional 32-bit floating point registers
◻ 4 optional 32-bit MAC16 data registers
◻ Optional Vectra LX DSP registers

Xtensa LX Architecture

■ General Purpose AR Register File
◻ 32 or 64 registers
◻ Instructions have access through “sliding

window” of 16 registers. Window can rotate by
4, 8, or 12 registers

◻ Register window reduces code size by limiting
number of bits for the address and eliminated
the need to save and restore register files

Xtensa LX Architecture

Xtensa LX Pipelining

■ 5 or 7 Stage Pipeline Design
■ 5 stage pipeline has stages: IF, Register Access,

Execute, Data-Memory Access, and register writeback
■ 5 stage pipeline accesses memory in two stages. 7 stage

pipeline is extended version of the 5 stage pipeline with
extra IF and Memory Access stage. Extra stages provide
more time for memory access. Designer can run at a
higher clock speed while using slower memory to
improve performance

Xtensa LX Instruction Set
■ ISA consists of 80 core instructions including both 16 and

24 bit instructions

Xtensa LX Instruction Set

■ Processor Control Instructions
◻ RSR, WSR, XSR

■ Read Special Register, Write Special Register
■ Used for saving and restoring context, Processing Interrupts and

Exceptions, Controlling address translation
◻ RUR, WUR

■ Access User Registers
■ Used for Coprocessor registers and registers created with TIE

◻ ISYNC – wait for Instruction Fetch related changes to resolve
◻ RSYNC – wait for Dispatch related changes to resolve
◻ ESYNC/DSYNC – Wait for memory/data execution related

changes to resolve

Xtensa LX ISA – Building Blocks

■ MUL32
◻ MUL32 adds 32 bit multiplier

■ MUL16 and MAC16
◻ MUL16 adds 16x16 bit multiplier
◻ MAC16 adds 16x16 bit multiplier and 40-bit

accumulator

Xtensa LX ISA – Building Blocks

■ Floating Point Unit
◻ 32-bit, single precision, floating-point

coprocessor
■ Vectra LX DSP Engine

◻ Optimized to handle Digital Signal Processing
Applications

Vectra LX DSP Engine
■ FLIX-based (why it is 64 bits)
■ Vectra LX instructions encoded in 64 bits.

■ Bits 0:3 of a Xtensa instruction determine its length and format, the
bits have a value of 14 to specify it is a Vectra LX instruction

■ Bits 4:27 – contain either Xtensa LX core instruction or Vectra LX
Load or Store instruction

■ Bits 28:45 – contains either a MAC instruction or a select instruction
■ Bits 46:63 – contains either ALU and shift instructions or a load and

store instruction for the second Vectra LX load/store unit

Vectra LX DSP Engine

Tensilica Instruction Extension

■ Method used to extend the processor’s
architecture and instruction set

■ Can be used in two ways:
◻ For the TIE Compiler
◻ For the Processor Generator

Tensilica Instruction Extension

■ TIE Compiler
◻ Generates file used to configure software

development tools so that they recognize TIE
Extensions

◻ Estimates hardware size of new instruction
◻ You can modify application code to take

advantage of the new instruction and simulate
to decide if the speed advantage is worth the
hardware cost

TIE

■ Resembles Verilog
■ More concise than RTL (it omits all

sequential logic, pipeline registers, and
initialization sequences.

■ The custom instructions and registers
described in TIE are part of the
processor’s programming model.

TIE Queues and Ports

■ New way to communicate with external devices
■ Queues: data can be sent or read through

queues. A queue is defined in the TIE and the
compiler generates the interface signals required
for the additional port needed to connect to the
queue. Logic is also automatically generated

■ Import-wire: processor can sample the value of
an external signal

■ Export-state: drive an output based on TIE

TIE

■ TIE Combines multiple operations into one
using:
◻ Fusion
◻ SIMD/Vector Transformation
◻ FLIX

Fusion

■ Allows you to combine dependent
operations into a single instruction

■ Consider: computing the average of two
arrays
unsigned short *a, *b, *c;
. . .
for(i = 0; i < n; i++)
c[i] = (a[i] + b[i]) >> 1;

◻ Two Xtensa LX Core instructions required, in
addition to load/store instructions

Fusion

■ Fuse the two operations into a single TIE
instruction
operation AVERAGE{out AR res, in AR input0, in AR input1}{}{

wire [16:0] tmp = input0[15:0] + input1[15:0];
assign res = temp[16:1];

}

◻ Essentially an add feeding a shift, described using
standard Verilog-like syntax

■ Implementing the instruction in C/C++

#include <xtensa/tie/average.h>
unsigned short *a, *b, *c;
. . .
for(i = 0; i < n; i++)

c[i] = AVERAGE(a[i] + b[i]);

SIMD/Vector Transformation

■ Single Instruction, Multiple Data
◻ Fusing instructions into a “vector”
◻ Allows replication of the same operation multiple times in one

instruction
■ Consider: Computing four averages in one instruction

◻ The follwing TIE code computes multiple iterations in a single
instruction by combining Fusion and SIMD

regfile VEC 64 8 v

operation VAVERAGE{out VEC res, in VEC input0, in VEC input1} {} {
wire [67:0] tmp = { input0[63:48] + input1[63:48],

input0[47:32] + input1[47:32],
input0[31:16] + input1[31:16],
input0[15:0] + input1[15:0] };

assign res = {tmp[67:52], tmp[50:35], tmp[33:18], tmp[16:1]};
}

SIMD/Vector Transformation

■ Computing four 16-bit averages
◻ Each data vector must be 64 bits (4 x 16 bits)

■ Create new register file, new instruction
◻ VEC - eight 64-bit registers to hold data vectors
◻ VAVERAGE - takes operands from VEC, computes average, saves

results into VEC
VEC *a, *b, *c;
for (i = 0; i < n; i += 4){
c[i] = VAVERAGE(a[i], b[i]);}

■ New Datatype recognized
◻ TIE automatically creates new load, store instructions to move 64-bit

vectors between VEC register file and memory

FLIX

■ Flexible length instruction extension
◻ Key in extreme extensibility
◻ Huge performance gains possible
◻ Code size reduction without code bloat

■ Similar to VLIW
■ Created by XPRES Compiler

FLIX

FLIX - Usage

■ Used selectively when parallelism is
needed

■ Avoids code bloat
■ Used seemlessly and modelessly used

with standard 16- and 24-bit instructions

XPRES Compiler

■ Powerful synthesis tool
◻ Creates tailored processor descriptions
◻ Run on native C/C++ code

■ Three optimizations methods
■ Returns optimal configurations along with

pros and cons (tradeoffs)

XPRES Compiler

■ Analyzes C/C++ code
■ Generates possible configurations
■ Compares performance criteria to silicon

size (cost)
■ Returns possible configurations

XPRES Compiler - Results

■ Application dependent
◻ Compute intensive programs
◻ Data intensive programs

■ More is sometimes less
◻ operation slots in FLIX

XPRES – 4 Program Test

■ “Bit Manipulator” program
■ Cut cycles to a third

XPRES – 4 Program Test

■ H.264 Deblocking Filter
◻ 6% performance improvement

XPRES – 4 Program Test
■ MPEG4 decoder

◻ 23% performance increase

XPRES – 4 Program Test
■ SAD – sum of absolute difference

◻ 63% performance increase

Xtensa Hi-Fi 2 Audio Engine

■ Add-on package for Xtensa LX
■ Advantages over common audio processors:

◻ better sound quality of compressed files because of
increased precision available for intermediate
calculations. (24 bits rather than 16)

◻ 24-bit audio fully compatible with modern audio
standards

Xtensa Hi-Fi 2 Audio Engine

■ Audio packages integrated into an SOC design,
so no additional codec development required

■ Integrated Audio Packages:
◻ Dolby Digital AC-3 Decoder, Dolby Digital AC-3

Consumer Encoder, QSound MicroQ, MP3
Encoder/Decoder, MPEG-4 aacplus v1 and v2
Encoder/Decoder, MPEG-2/4 AAC LC
Encoder/Decoder, WMA Encoder/Decoder, AMR
narrowband speech codec, AMR wideband speech
codec.

Xtensa Hi-Fi 2 Audio Engine

■ Uses over 300 audio specific DLP
instructions.

■ Features dual-multiply accumulate for
24x24 and 32x16 bit arithmetic on both
units

■ “delivers noticeably superior sound quality
even when decoding prerecorded 16-bit
encoded music files. “

Speed-up Example

■ GSM Audio Codec – written in C
■ Profiling code using unaltered RISC architecture

showed that 80% of the processor cycles were
devoted to multiplication

■ Simply by adding a hardware multiplier, the
designer can reduce the number of cycles
required from 204 million to 28 million

Speed-up Example

■ Viterbi butterfly instruction
◻ Acts like compression for the data
◻ Consists of 8 logical operation
◻ 8 of these operations are used to decode each

symbol in the received digital information stream
◻ The designer can add a Viterbi instruction to the

Xtensa ISA. The extension can use the 128-bit
memory bus to load data for 8 symbols at once. This
results in a average execution time of 0.16 cycles per
butterfly. An unaugmented Xtensa LX executes Viterbi
in 42 cycles.

EEMBC Networking Benchmark

■ Xtensa LX received highest benchmark
ever achieved on the Networking version 2
test.

■ Xtensa LX has a 4x code density
advantage and a 100x advantage in both
die area and power dissipation

EEMBC Networking Benchmark
■ Normalized (per MHz)

EEMBC TCPmark
■ Simulates

performance in
internet enabled client
side performance

0.33762Xtensa LX
Out of the
Box

0.5856PowerPC
MCP7447A

0.4671PowerPC
760GX

1.62434Xtensa LX
Optimized

ScoreProcessor

EEMBC Networking Benchmark
■ Normalized (by MHz)

EEMBC IPmark
■ Simulates

performance in
network routers,
gateways, and
switches

0.1751PowerPC
MCP7447A

0.1818Xtensa LX
Out of the
Box

0.2861PowerPC
760GX

0.82138Xtensa LX
Optimized

ScoreProcessor

EEMBC Networking Benchmark
■ Total Code Size

280,984 PowerPC
MCP7447A

255,764 PowerPC
760GX

67,256 Xtensa LX
Out of the
Box

65,208 Xtensa LX
Optimized

Total Size of
Code

Processor

How Xtensa Compares

How Xtensa Compares

How Xtensa Compares (cont)

Uses of Xtensa Products

■ NVIDIA – Licensed Xtensa LX
◻ “We were very impressed with Tensilica's

automated approach for both the processor
extensions and the generation of the
associated software tools”

Uses of Xtensa Products

■ LG Cell Phone
◻ Phone is digital broadcast enabled
◻ Xtensa processor was used because it

enabled LG to “cut design time significantly
and be first to market with this exciting new
technology.”

◻ Terrestrial digital-multimedia-broadcast
system in Korea

In case you are wondering..
■ --Tensilica's announced licensees include Agilent, ALPS,

AMCC (JNI Corporation), Astute Networks, ATI, Avision,
Bay Microsystems, Berkeley Wireless Research Center,
Broadcom, Cisco Systems, Conexant Systems, Cypress,
Crimson Microsystems, ETRI, FUJIFILM Microdevices,
Fujitsu Ltd., Hudson Soft, Hughes Network Systems,
Ikanos Communications, LG Electronics, Marvell, NEC
Laboratories America, NEC Corporation, NetEffect,
Neterion, Nippon Telephone and Telegraph (NTT),
NVIDIA, Olympus Optical Co. Ltd., sci-worx, Seiko
Epson, Solid State Systems, Sony, STMicroelectronics,
Stretch, TranSwitch Corporation, and Victor Company of
Japan (JVC).

Questions?

