Information

Discipline: Bioorganic chemistry Final assessment: test

Lecturer: PhD, docent Irina Vyacheslavovna Tarasova (department of organic chemistry)

e-mail: tarasova_iv_mrsu@mail.ru web: http://vk.com/club114428385

General aspects of chemical structure and reactivity of organic compounds

Lecture №1

Chemical bonding and mutual atoms' influence in organic molecules

Electronic configuration of carbon atom in organic molecules

ground state

excited state

Atomic orbitals

The orbital is a region of space where the probability of finding an electron is large, above 95% of its time.

Hybridization of orbitals

Hybridization is the process of atomic orbitals alignment in form and energy.

*sp*³-Hybridization

tetrahedral configuration

*sp*²-Hybridization

sp-Hybridization

sp linear configuration

Chemical bonds in organic compounds

Conjugation

Conjugation is the formation of delocalized electronic cloud in molecule as a result of *p*-orbitals overlap.

 π,π -Conjugation is the type of orbital interaction when the *p*-orbitals are delocalized over the entire π system.

 p,π -Conjugation is the overlap of a p-orbital on an atom adjacent to a double bond.

π,π -Conjugation

butadiene-1,3

p,π-Conjugation

methyl vinyl ether

Aromaticity

benzene

A molecule can be aromatic only if it has a planar cyclic system of conjugation with a p-orbital on each atom and only if the *p*-orbital system contains (4n+2) π -electrons, where *n* is an integer (0, 1, 2, 3, etc.).

Inductive effect

Inductive effect (I) is the shifting of electrons in a σ -bond in response to electronegativity of nearby atoms.

- present in any polar molecule;
- decrease and fade after 2-3 bonds.

Mesomeric effect

Mesomeric effect (M) is the shifting of electron density caused by a substituent in conjugation system through p-orbital overlap.

present only in conjugation systems;

distribute throughout the conjugated system.

Electron donors (D) and electron withdrawers (W)

Substituent	Electronic effects		Type of
	inductive	mesomeric	substituent
Alkyl- (R)	+I	-	D
-NH ₂ , -NHR, -NR ₂ , -OH, -OR	-I	+M	+M > -I D
Halogens	-I	+M	-I > +M W
-NO ₂ , -COOH, -CN, -SO ₃ H, >C=O	-I	-M	W

Spatial structure of organic compounds

Isomerism of organic compounds

Isomers are the compounds which have the same composition but different sequence of atoms or their location in space, therefore have different properties.

Stereoisomerism

Stereoisomers are the compounds that have the same order of atoms attachment but differ only in the arrangement of their atoms or groups in space.

Configuration of molecules

Configuration is the arrangement of atoms and groups in space without regard to arrangements that differ only due to rotation about one or more single bonds.

Carbon atom configurations

tetrahedral

Chirality

Chirality is the property of the object to be nonsuperposable with its mirror image.

The simple example of chirality is presence the chiral center in molecule. It may be carbon atom with four different atoms or groups - *asymmetric carbon atom* (**C*). Such molecules have optical activity – they rotate the plane of polarized light.

Types of isomers:

enantiomers

✓ diastereomers

Enantiomers

Enantiomers are the stereoisomers, the molecules of which relate to each other as an object and its nonsuperposable mirror image.

- enantiomers have the same physical and chemical properties;
- enantiomers have optical activity.

Enantiomers of glyceraldehyde

Racemate is a mixture containing equal amounts of both enantiomers. Racemic mixture is optically inactive.

Fischer projections

Rules

- the carbon chain is disposed vertically (with the principle group at the top);
- substituents on the horizontal line lie in front of the plane, on vertical line— behind the plane of the paper;
- two interchanges do not alter the initial configuration;
- the rotation of projection through 180° in the plane of the paper do not alter the initial configuration.

D,L-Nomenclature

- Glyceraldehyde is the configurational standard.
- Fischer projection writes in "standard view". We can do the interchanges or rotate the projection through 180° to achieve the "standard view".
- If the group lies on the left side we name it as levorotatory enantiomer (*L*). If the group lies on the right side we name it as dextrorotatory enantiomer (*D*).

R,S-Nomenclature

- The least substituent near the chiral center must lie at the bottom of the Fischer projection.
- Atoms attached directly to the chiral center are first arranged according to decreased atomic number.
- ✓ If the remaining three groups are arranged clockwise, the configuration is symbolized by *R*. If they form a counterclockwise array, the configuration is symbolized by *S*.

Diastereomers

Diastereomers are the stereoisomers that are not mirror images of one another.

they have different physical and chemical properties.

If a molecule has *n* chiral centers, the total number of stereoisomers will be $N = 2^n$.

meso Compounds

A meso compound is an optically inactive achiral stereoisomer containing chiral centers.

Acidity and basicity of organic compounds Acidity and basicity are the key notions, determining many fundamental physico-chemical and biochemical properties of organic compounds.

Brønstedt-Lowry concept

J.-N. Brønstedt

An acid is a neutral molecule or an ion that can donate a proton.

A base is a neutral molecule or an ion that can accept a proton.

 $AH + :B = A^{-} + BH^{+}$ acid

base

conjugate base

conjugate acid

Brønstedt acids

Acidic site is a part of molecule that involves hydrogen together with an atom attached to it.

Brønstedt bases

Basic site is a heteroatom with a lone-pair of electrons or a π -bond which are capable to accept a proton.

Comparison the acidity

The more stable is an anion, the stronger is an acid!

- The factors which influence the stability of conjugate bases:
 - electronegativity and polarizability of the atom in the acidic site;
 - delocalization of a negative charge due to the effect of substituens in a molecule;
 - ✓ solvation effects.

The influence of atom nature in acidic site

The influence of substituents effects

Comparison the basicity

The more stable is an cation and the more available a lone-pair of electrons, the stronger is an base!

The factors which influence the stability of conjugate acids is the same but they act in the opposite direction:

The influence of atom nature in the basic site

The influence of substituents effects

сн₃-- NH₂ > NH₃ > (О --NH2 > (◯)-NH2 > NO2-4(⊂ NH₂

Lewis concept

A Lewis acid is any substance that can accept an electron pair in forming a covalent bond.

A Lewis base is any substance that can donate an electron pair in forming a covalent bond.

 $(CH_3)_3N: + BF_3 = (CH_3)_3N^+ - BF_3^-$