PART 1: FINANCIAL PLANNING

Chapter 3

Understanding the Time Value of Money

Learning Objectives

- Explain the mechanics of compounding.
- Use a financial calculator to determine the time value of money.
- Understand the power of time in compounding.
- Explain the importance of the interest rate in determining how an investment grows.
- Calculate the present value of money to be received in the future.
- Define an annuity and calculate its compound or future value.

Compound Interest and Future Values

- Compound interest is interest on interest.
- If you take interest earned on an investment and reinvest it, you earn interest on the principal and the reinvested interest.
- The amount of interest grows, or compounds.

How Compound Interest Works

- How does \$100 placed in a savings account at 6% grow at the end of the year?
- \$106 = 100 + 6

• $FV_1 = PV + (i)$

- FV₁ = the future value of the investment at the end of year 1
- *i* = the annual interest rate, based on the beginning balance and paid at the end of the year
- PV = the present value or current value in today's dollars

How Compound Interest Works

 What will the account look like at the end of the second year if the interest is reinvested?
 PV = \$106

• $FV_2 = FV_1 + (1 + i)^n$ $FV_2 = 106 + (1.06) =$ \$112.36

- $FV_n = PV(1 + i)^n$
- FV_n = the future value of the investment at the end of n years
- i = the annual interest rate, based on the beginning balance and paid at the end of the year
- PV = the present value or current value in today's dollars

How Compound Interest Works

 Example: You receive a \$1000 academic award this year for being the best student in your personal finance course. You place it in a savings account paying 5% interest compounded annually. How much will your account be worth in 10 years?

•
$$FV_n = PV + i$$

 $PV = 1000
 $i = 5\%$

n = 10 years

•
$$FV_{10} = 1628.89$$

The Future-Value Interest Factor

- Calculating future values by hand can be difficult. Use a calculator or tables.
- The future-value interest factor, found in a table, replaces the (1 + *i*)ⁿ part of the equation.

The Future-Value Interest Factor

- The amounts in the table represent the value of \$1 compounded at rate of *i* at the end of *n*th year.
- *FVIF*_{*i*, *n*} is multiplied by the initial investment to calculate the future value of that investment.

The Future-Value Interest Factor

- Previous example: What is the future value of investing \$1000 at 5% compounded annually for 10 years?
- Using Table 3.1, look for the intersection of the n = 10 row and the 5% column.
- The FVIF = 1.629
- \$1000 x 1.629 = \$1629

The Rule of 72

• How long will it take to double your money?

 The Rule of 72 determines how many years it will take for a sum to double in value by dividing the annual growth or interest rate into 72.

The Rule of 72

- Example: If an investment grows at an annual rate of 9% per year, then it should take 72/9 = 8 years to double.
- Use Table 3.1 and the future-value interest factor: The FVIF for 8 years at 9% is 1.993 (or \$1993), nearly the approximated 2 (\$2000) from the Rule of 72 method.

Compound Interest with Nonannual Periods

- Compounding periods may not always be annually.
- Compounding may be quarterly, monthly, daily, or even a continuous basis.
- The sooner interest is paid, the sooner interest is earned on it, and the sooner the benefits or compounding is realized.
- Money grows faster as the compounding period becomes shorter.

Compounding and the Power of Time

- Manhattan was purchased in 1626 for \$24 in jewelry and trinkets.
- Had that \$24 been invested at 8% compounded annually, it would be worth over \$120.6 trillion today.
- This illustrates the incredible power of time in compounding.

The Importance of the Interest Rate

- The interest rate plays a critical role in how much an investment grows.
- Consider the "daily double" where a penny doubles in value each day. By the end of the month, it will grow to over \$10 trillion.
- Albert Einstein called compound interest "the eighth wonder of the world."

- Present value is the value of today's dollars of money to be received in the future.
- Present value strips away inflation to see what future cash flows are worth today.
 - Allows comparisons of dollar values from different periods.

- Finding present values means moving future money back to the present.
- This is the inverse of compounding.
- The "discount rate" is the interest rate used to bring future money back to present.

- $PV = FV_n[1/(1 + i)^n]$
 - *PV* = present value of a sum of money.
 - *FV* = future value of investment at the end of *n* years.
 - n = number of years until payment will be received.
 - *i* = annual discount (or interest) rate.
- The present value of a future sum of money is inversely related to both the number of years until payment will be received and the discount rate.

- Tables can be used to calculate the [1/(1+i)ⁿ] part of the equation.
- This is the present-value interest factor (PVIF).

- Example: What is the present value of \$100 to be received 10 years from now if the discount rate is 6%?
- Using Table 3.3, n = 10 row and i = 6% column, the PVIF is 0.558.
 - Insert FV_{10} = \$100 and $PVIF_{6\%, 10 \text{ yr}}$ = 0.558 into the equation.
- The value in today's dollars of \$100 future dollars is \$55.80.

- Example: You have been promised \$500,000 payable 40 years from now. What is the value today if the discount rate is 6%?
- $PV = FV_n(PVIF_{i\%, n yrs})$
- Using Table 3.3, n = 40 row and i = 6% column, the PVIF is 0.097.
 - Multiply the \$500,000 by 0.097.
- The value in today's dollars is \$48,500.

- You've just seen that \$500,000 payable 40 years from now, with a discount rate of 6%, is worth \$48,500 in today's dollars.
- Conversely, if you deposit \$48,500 in the bank today, earning 6% interest annually, in 40 years you would have \$500,000.
- There is really only one time value money equation.

Annuities

- An annuity is a series of equal dollar payments coming at the end of each time period for a specific time period.
- Pension funds, insurance obligations, and interest received from bonds are annuities.

- A compound annuity involves depositing an equal sum of money at the end of each year for a certain number of years, allowing it to grow.
- Constant periodic payments may be for an education, a new car, or any time you want to know how much your savings will have grown by some point in the future.

- Example: You deposit \$500 at the end of each year for the next 5 years. If the bank pays 6% interest, how much will you have at the end of 5 years?
- Future value of an annuity = annual payment x future value interest factor of an annuity.
- Use Table 3.6, column *i* = 6%, row *n* = 5, the FVIFA is 5.637.
- \$500 x 5.637 = \$2,818.50 at the end of 5 years.

- Example: You need \$10,000 for education in 8 years. How much must you put away at the end of each year at 6% interest to have the college money available?
- You know the values of n, i, and FV_n, but don't know the PMT.
- You must deposit \$1010.41 at the end of each year at 6% interest to accumulate \$10,000 at the end of 8 years.

- Example: You deposit \$2000 in an IRA at the end of each year, and it grows at 10% per year. How much will you have after 40 years?
- $FV_n = PMT (FVIFA_{i\%, n years})$
- The future value after 40 years of an annual deposit of \$2000 per year is \$885,160.

Present Value of an Annuity

- To compare the relative value of annuities, you need to know the present value of each.
- Use the present-value interest factor for an annuity *PFIVA*_{*i*,*n*}.

Present Value of an Annuity

- Example: You are to receive \$1,000 at the end of each year for the next 10 years. If the interest rate is 5%, what is the present value?
- Using Table 3.7, row
 n = 10, i = 5%.
- The present value of this annuity is \$7722.

Amortized Loans

- Annuities usually involve paying off a loan in equal installments over time.
- Amortized loans are paid off this way.
- Examples include car loans and mortgages.

Amortized Loans

- Example: You borrow \$6000 at 15% interest to buy a car and repay it in 4 equal payments at the end of each of the next 4 years. What are the annual payments?
- *PV*=\$6000, *i*=15%, *n*=4.
- Substituting into the equation the *PMT* would be \$2101.58.

Perpetuities

- A perpetuity is an annuity that continues forever.
- Every year this investment pays the same dollar amount and never stops paying.
- Present value of a perpetuity = payment/discount rate.

Perpetuities

- What is the present value of a perpetuity that pays a constant dividend of \$10 per share forever, if the discount rate is 5%?
- PV = present value of the perpetuity
- *PP* = the annual dollar amount provided by the perpetuity.
- *i* = the annual interest (or discount) rate.
- \$10/0.05 = \$200