

Донской государственный технический университет *Кафедра «Химия»*

Основы химической кинетики и химическое равновесие

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Химическая кинетика - раздел химии, изучающий скорости и механизмы химических процессов, а также зависимость их от различных факторов.

Механизм реакции – это последовательность отдельных простейших (элементарных) стадий реакции, в результате которых происходит образование конечных веществ.

Теоретическое значение кинетики состоит в том, что она позволяет проникнуть в сущность механизма химического взаимодействия.

Прикладное значение кинетики определяется тем, что для практического использования какой-либо реакции необходимо управлять ею, т.е. знать скорость ее протекания в данных условиях и способы изменения этой скорости.

КЛАССИФИКАЦИЯ РЕАКЦИЙ

- по числу частиц, участвующих в элементарном акте реакции (молекулярность)
- по числу фаз, участвующих в реакции
- по применимости катализаторов
- по степени сложности
- по механизму протекания

МОЛЕКУЛЯРНОСТЬ

Молекулярность реакции — это минимальное число молекул, участвующих в элементарном химическом процессе.

Мономолекулярные реакции:

$$C_2H_6 = 2CH_3$$

Бимолекулярные реакции:

$$CH_3^{\cdot} + CH_3^{\cdot} = C_2H_6$$

 $H_2(\Gamma) + I_2(\Gamma) = 2HI(\Gamma)$

Тримолекулярные реакции:

$$2NO + O_2 = 2 NO_2$$

 $2NO + Cl_2 = 2 NOCI$

ГОМОГЕННЫЕ И ГЕТЕРОГЕННЫЕ РЕАКЦИИ

Гомогенные реакции — это реакции, протекающие в однородной среде (в одной фазе). Например, в газообразной фазе или жидком растворе. Гомогенные реакции протекают равномерно во всем объеме реакционного пространства.

Гетерогенные реакции — это реакции, протекающие в неоднородной среде, т.е. между веществами, которые находятся в разных фазах (твердой и жидкой, газообразной и жидкой и т.д.). Гетерогенные реакции идут на границе раздела фаз.

PITY)

КАТАЛИТИЧЕСКИЕ И АВТОКАТАЛИТИЧЕСКИЕ РЕАКЦИИ

Каталитические реакции — это реакции, протекающие под действием катализаторов.

$$A + B = AB$$

Автокаталитические реакции – это реакции, в которых катализатором является один из продуктов реакции.

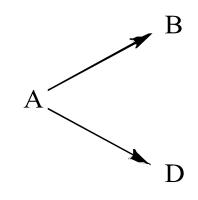
Например, при разложении перманганата калия образуется оксид марганца (IV), который является катализатором для данного процесса:

$$2KMnO_4 = K_2MnO_4 + MnO_2 + O_2$$

ПРОСТЫЕ И СЛОЖНЫЕ РЕАКЦИИ

Простые реакции - это реакции, протекающие в одну стадию, в них участвуют только частицы, входящие в уравнение реакции.

Сложные реакции – это реакции, идущие в несколько стадий, которые идут последовательно, либо параллельно, либо последовательно-параллельно.


ПРИМЕРЫ СЛОЖНЫХ РЕАКЦИЙ

Последовательными реакциями называют реакции с промежуточными стадиями, когда продукт предыдущей стадии служит исходным веществом для последующей. $Cl_2 + CHCl_3 = HCl + CCl_4$ $A \longrightarrow B \longrightarrow C$

Параллельными реакциями называют реакции, в которых исходные вещества способны образовывать разные продукты реакции или одно вещество

одновременно способно реагировать с несколькими веществами.

$$N_2H_4 = N_2 + 2H_2$$
; $3N_2H_4 = N_2 + 4NH_3$

ОБРАТИМЫЕ И НЕОБРАТИМЫЕ РЕАКЦИИ

Обратимые реакции - это реакции, которые при одних и тех же условиях протекают в прямом и обратном направлении.

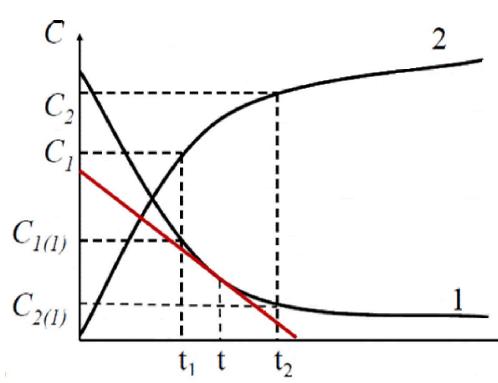
$$I_2 + H_2 = 2HI$$
 обратная реакция

Необратимыми реакциями называются реакции, которые протекают только в одном направлении, т.е. продукты этих реакций не взаимодействуют друг с другом с образованием исходных веществ.

прямая реакция
$$C_2H_5OH + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

СКОРОСТЬ ХИМИЧЕСКОЙ РЕАКЦИИ

Под скоростью гомогенной химической реакции (v) понимают изменение количества вещества (Δn) за единицу времени (τ) в единице объема системы (V)


$$v_{\text{гомоген}} = \frac{\Delta n}{\tau \cdot V}$$

Скоростью химической реакции $v = \frac{1}{\Delta \tau}$ называют изменение концентрации $\Delta \tau$ реагирующих веществ в единицу времени.

Под скоростью гетерогенной химической реакции (v) понимают изменение количества вещества (∆n) за единицу времени (т) на единице поверхности раздела фаз (S)

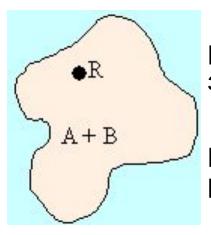
$$u_{ ext{гетероген}} = rac{\Delta n}{ au \cdot S}$$

Изменение концентрации исходного вещества (1) и продукта реакции (2) во времени

Средняя скорость реакции — конечное изменение концентрации $c_2 - c_1$, относящееся к промежутку времени $t_2 - t_1$

 $v=\pm\frac{\Delta t}{\Delta t}$

Истинная (мгновенная) скорость реакции определяется тангенсом угла наклона касательной в точке, соответствующей данному моменту времени v = +


- природа реагирующих веществ
- концентрация реагирующих веществ
- физическое состояние веществ
- температура
- катализатор
- стерический фактор

ЗАКОН ДЕЙСТВУЮЩИХ МАСС

Открыт в 1867 г. норвежскими ученными математиком Като Максимилианом Гульдбергом и химиком Петером Вааге.

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов.

Математическое обоснование закона действующих масс для реакции A + B = C

Вероятность нахождения молекул А и В в точке R зависит от их концентраций

$$\omega_{A} = \alpha[A]$$
 $\omega_{B} = \beta[B]$

Вероятность сложного события (т.е. их столкновения) равна произведению вероятностей простых событий

$$ω_{AB} = ω_A · ω_B = α[A] · β[B]$$
 $α · β = k$

$$V_{AB} = k [A] · [B]$$

КИНЕТИЧЕСКИЕ УРАВНЕНИЯ

Кинетическое уравнение – это математическое выражение, связывающие скорость реакции с концентрацией реагирующих веществ.

a A + b B
$$\xrightarrow{k_1}$$
 c C + d D
$$v_{\text{пр}} = k_1 \cdot [A]^a \cdot [B]^b \qquad v_{\text{обр}} = k_2 \cdot [C]^c \cdot [D]^d$$

Для гомогенной реакции: $3H_2(r) + N_2(r) = 2NH_3(r)$

$$v=k \cdot [H_2]^3 \cdot [N_2]$$

Для гетерогенной реакции: $C(\kappa) + O_2(r) = CO_2(r)$

$$v=k \cdot [O_2]$$

КОНСТАНТА СКОРОСТИ РЕАКЦИИ

k – коэффициент пропорциональности, называемый константой скорости реакции

физический смысл

Константа скорости реакции численно равна скорости реакции, при концентрации реагирующих веществ равной единице коэффициент пропорциональности, называемый

Константа скорости реакции зависит от природы реагирующих веществ, температуры и присутствия катализаторов, но не зависит от концентрации веществ

константой скорости реакции

ПРАВИЛО ВАНТ-ГОФФА

Якоб Хендрик Вант-Гофф

При повышении температуры на 10^0 скорость химической реакции увеличивается в 2-4 раза

$$v_2 = v_1 \cdot \gamma^{\frac{t_2^0 - t_1^0}{10}} = v_1 \cdot \gamma^{\frac{\Delta t}{10}}$$

 V_1 - скорость реакции при температуре t_1^0 ;

 v_2 - скорость реакции при температуре t_2^0 ;

γ - температурный коэффициент,
 принимает значения от 2 до 4

ТЕОРИЯ АКТИВНЫХ СТОЛКНОВЕНИЙ

Сванте Август Аррениус

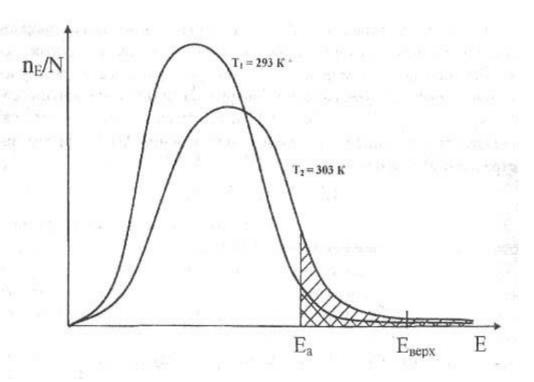
Теория активных столкновений позволяет вывести математическое соотношение между скоростью реакции, частотой столкновений и вероятность того, что энергия молекул превосходит величину E_{Δ}

УРАВНЕНИЕ АРРЕНИУСА

$$\ln k = z \cdot e^{\frac{-E_a}{RT}}$$

k – постоянная скорости реакции;

z — число столкновений;


R – универсальная газовая постоянная;

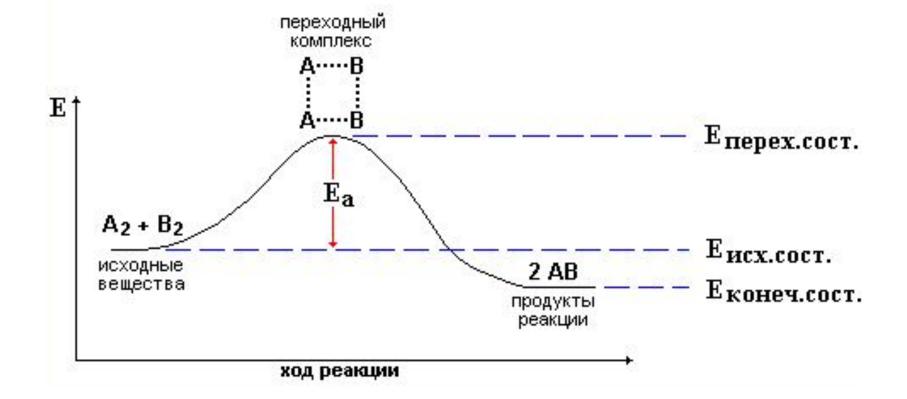
T – абсолютная температура;

Е - энергия активации.

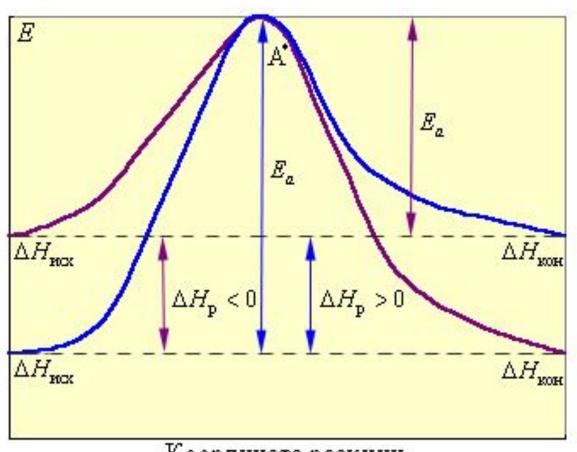
ЭНЕРГИЯ АКТИВАЦИИ

Распределение молекул по кинетической энергии

Энергия активации – минимальная энергия, которая необходима для химического взаимодействия.


Энергию активации можно рассматривать как некоторый энергетический барьер, который должны преодолеть сталкивающиеся молекулы.

ТЕОРИЯ ПЕРЕХОДНОГО СОСТОЯНИЯ


$$A_2 + B_2 \longrightarrow \vdots \qquad \vdots \qquad \longrightarrow 2AB$$

$$A \cdots B$$

ЭНЕРГЕТИЧЕСКИЙ ПРОФИЛЬ РЕАКЦИЙ

Координата реакции

— Экзотермическая

– Эндотермическая

энергия активации $\Delta H_{\text{ucx.}}$ стандартная энтальпия исходных веществ $\Delta H_{_{KOH.}}$ стандартная энтальпия продуктов реакции $\Delta H_{_{D}}$ – тепловой эффект реакции

КАТАЛИЗАТОР

Вещества, не расходующиеся в результате протекания реакции, но влияющие на ее скорость называются катализаторами.

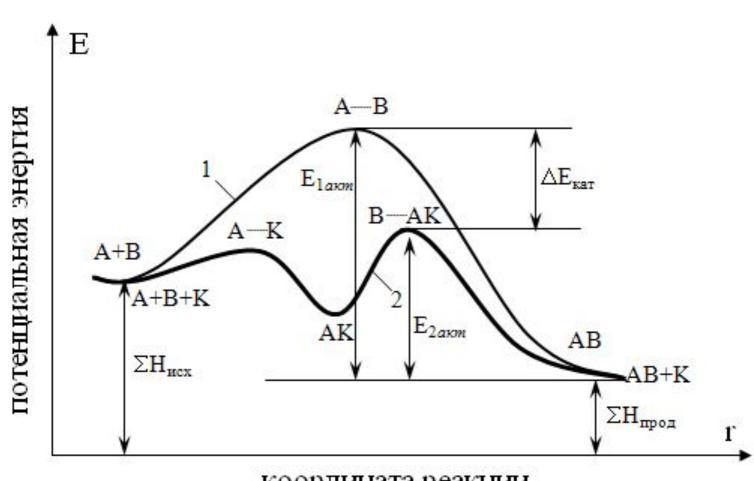
Явление изменения скорости реакции под действием катализаторов называют **катализом**.

Механизм действия катализатора:

1 стадия: $A + K \rightarrow A ... K \rightarrow AK$

акт. комп.

2 стадия: $AK + B \rightarrow B \dots AK \rightarrow AB + K$


акт. комп.

В ходе реакции катализатор не расходуется

Катализатор изменяет путь реакции и тем самым влияет на энергию активации

ВЛИЯНИЕ КАТАЛИЗАТОРА НА ЭНЕРГИЮ АКТИВАЦИИ

координата реакции

ТИПЫ КАТАЛИЗАТОРОВ

При гомогенном катализе - катализатор и реагирующие вещества находятся в одной фазе

схема реакции:

$$2H_2O_2 \rightarrow 2H_2O+O_2$$

$$2H_2O_2 \rightarrow 2H_2O + O_2$$
 1. $H_2O_2 + I^T \Leftrightarrow H_2O + IO^T$

2.
$$IO^{-} + H_{2}O_{2} \rightarrow H_{2}O + I^{-} + O_{2}$$

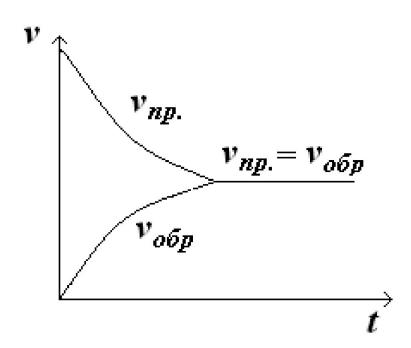
При гетерогенном катализе – катализатор и реагенты находятся в разных фазах

схема реакции:

$$CO + 1/2 O_2 \rightarrow CO_2$$

$$CO + 1/2 O_2 \rightarrow CO_2$$
 1. $CO (r) + s \rightarrow CO (адс.)$

2.
$$O_2(\Gamma) + s \rightarrow 2O(адс.)$$


4.
$$CO_2$$
(адс.) → CO_2 (г)

ферментативном катализе – катализатором При являются сложные белковые молекулы (энзимы)

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Состояние обратимой реакции, при котором скорость прямой реакции равна скорости обратной реакции, называется химическим равновесием.

$$a A + b B \xrightarrow{k_{\text{np.}}} c C + d D$$

$$u_{\text{np}} = k_{np} \cdot [A]^a \cdot [B]^b$$

$$u$$
обр $= k_{oбp} \cdot [C]^c \cdot [D]^d$

$$k_{\text{IIP}} \cdot [A]^a \cdot [B]^b = k_{\text{OSp}} \cdot [C]^c \cdot [D]^d$$

КОНСТАНТА ХИМИЧЕСКОГО РАВНОВЕСИЯ

Константа химического равновесия - это отношение произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ, при чем все вещества находятся в степенях численно равных их стехиометрическим коэффициентам.

$$K_{\mathrm{p}} = rac{k_{\mathrm{np}}}{k_{\mathrm{ofp}}} = rac{\left[C
ight]_{p}^{c} \cdot \left[D
ight]_{p}^{d}}{\left[A
ight]_{p}^{a} \cdot \left[B
ight]_{p}^{b}}$$

Для гомогенных реакций: $2SO_2(r) + O_2(r) = 2SO_3(r)$

$$K_{p} = \frac{\left[SO_{3}\right]^{2}}{\left[SO_{2}\right]^{2} \cdot \left[O_{2}\right]}$$

Для гетерогенных реакций: ZnO(тв)+H₂(г)=Zn(тв)+H₂O(г)

$$K_{p} = \frac{\left[H_{2}O\right]}{\left[H_{2}\right]}$$

ПРИНЦИП ЛЕ ШАТЕЛЬЕ

Химическое равновесие является подвижным. При изменении внешних условий скорости прямой и обратной реакций могут стать неодинаковыми, что обуславливает смещение (сдиг) равновесия.

Анри Луи Ле Шателье

В 1884 г. французский химик Анри Луи Ле Шателье сформулировал принцип.

Если на равновесную систему оказать внешнее воздействие, то равновесие смещается в сторону той реакции (прямой или обратной), которая противодействует этому воздействию.

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СМЕЩЕНИЕ ХИМИЧЕСКОГО РАВНОВЕСИЯ

- **1. Концентрация**. При увеличении (уменьшении) концентрации реагирующих веществ и при уменьшении (увеличении) концентрации продуктов реакции химическое равновесие смещается вправо (влево).
- **2. Давление.** При увеличении (уменьшении) давления равновесие смещается в сторону уменьшения (увеличения) числа молекул (молей) газообразных веществ.
- **3. Температура.** Повышение (понижение) температуры приводит к смещению химического равновесия в сторону эндотермической (экзотермической) реакции.