TRAINING COURSE ANTENNA AND PEDESTAL GROUP (APG)

Primary Surveillance Radar Systems ATM

Nº doc.: 0066605020000MA03 Edición: A Revisión: 1 Fecha: 09/03/2020

Indra

Warning of Confidentiality

The data and information, in its totality or partial expression, contained in this document are property of Indra Sistemas, S.A. This data and information cannot be disclosed totally or partially to third parties. The copy, reproduction, public communication, dissemination, total or partial distribution, modification or assignment will require the prior written authorization of Indra Sistemas, S.A. Its content cannot be used for different purposes to those for which it is provided, its use being limited to the execution of the Program it is supplied for.

Signature Sheet

	INDRA			
	Name	Signature	Date	Responsibility
Prepared	Jaime Herrero Gutiérrez			Systems Engineer
Revised	Carolina Rincón Gila			Systems Engineer
Approved	Crisanto Molina Blesa			Quality Assurance
Authorized	Crisanto Molina Blesa			Systems Engineer

Changes Record

DOCUMENT CHANGES RECORD				
EDITION	REVISION	DATE	CHAPTER	REASON OF THE CHANGES
А	0	15/04/2017	All	First Edition
А	1	09/03/2020	All	Second Edition

Acronyms

AC	Alternate Current	
ACP	Azimuth Change Pulse	
APG	Antenna and Pedestal Group	
ARP	Azimuth Reset Pulse	
BITE	Built-in test Equipment	
cm	Centimeter	
СН	Channel	
CMS	Control and Monitor System	
COTS	Commercial-Of-The-Shelf	
CW	Clock Wise	
CCW	Counter Clock Wise	
dB	Decibel	
DC	Direct Current	
DRCG	Dual Rotary Control Group	
EPG	Exciter and Processor Group	

ındra

Acronyms

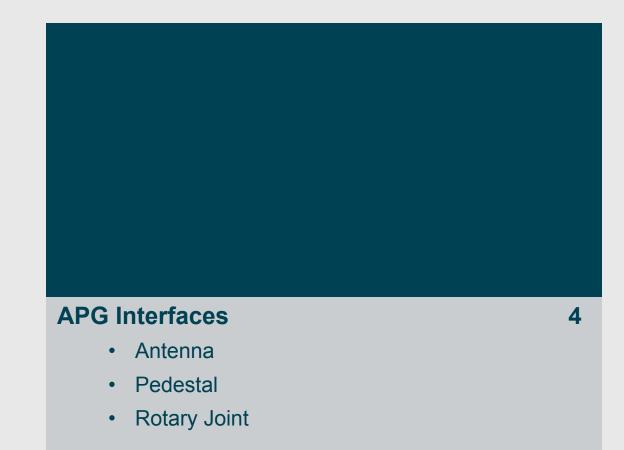
EMC 🗸	Electromagnetic Compatibility
GHz	Gigahertz
h	Hour
Hz	Hertz
Kg	Kilogram
Km	Kilometer
Kw	Kilowatt
KVA	Kilovoltamper
LAN	Local Area Network
LVA	Large Vertical Aperture
m	Meter
mm	millimeter
MSSR	Monopulse Secondary Surveillance Radar
NLFM	Non Lineal Frequency Modulation
NM (nmi)	Nautical Miles

ındra

Acronyms

PLC	Programmable Logic Controller	
PSR	Primary Surveillance Radar	
РТСР	Pedestal Top Control Panel	
RJ	Rotary Joint	
RF	Radiofrequency	
rpm	Revolution per minute	
S	Second	
SLG	Local Control System	
TGT	Target	
WX	Weather	
°C	Celsius degree	

ındra

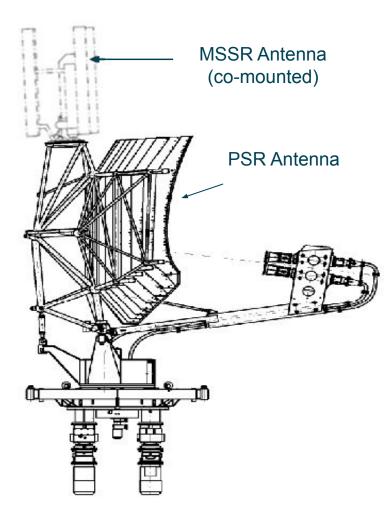

Index

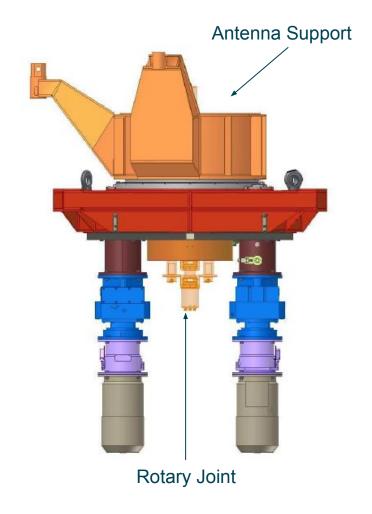
APG Physical and Functional Description 2

- Antenna
- Pedestal
- Rotary Joint

ındra

Index

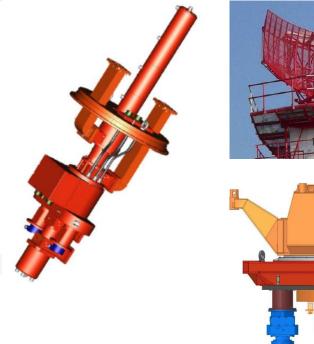

ındra


٦

Introduction

- Block Diagram
- Functional Description and elements
- System composition

Block Diagram


ındra

Functional Description and Elements

- Antenna subsystem transmits and receives RF signals and consists of:
 - □ A reflector.
 - Two feedhorns.
 - Polarizer.
- Pedestal subsystem performs antenna rotation and consists of:
 - □ Two motors.
 - □ Two gearboxes.
 - □ Two Electrical Clutches.
- Rotary joint subsystem consists of a fixed and a moving part and provides:
 - □ 7 RF channels: □ 4 for PSR (2 for TGT in waveguide and 2 for WX in coaxial)
 - □ 3 for MSSR (coaxial)
 - □ 18 AC/DC slip-rings.
 - 2 encoders.
- The rotary joint is the interface between the APG and the sensor (for transmission and reception).
 - Beception: coaxial cable for weather low/high beams. Waveguide for target high beam and target low beam.
 - □ Transmission: Waveguide through low beam path.
- The high target channel is directed to the sensor through coaxial by means of a coupler after the rotatory joint.

System Composition APG Performance

- Antenna (RAMET):
 - □ Gain > 34 dB.
 - \square Beam Width = 1.45 ± 0.05 degrees.
 - □ 2 elevation beams (HI-LOW).
 - □ 2 polarizations.
 - □ 2 Ch for Target + 2 Ch for Weather.
- Pedestal (RAMET):
 - □ Configurable Rotation Speed.
 - Dual Motors of 5.5 kW.
 - □ Includes Antenna Support.
- Rotary Joint (Cobham, Sivers Lab Sweden):
 - □ 7 RF channels (4 PSR + 3 MSSR).
 - Dual Encoders.

Indra

APG Physical and Functional Description

- Antenna
- Pedestal
- Rotary Joint

2

Introduction

- Antenna subsystem is a COTS element made by RAMET and performs RF signal transmission and reception in S-band (2.7 a 2.9 GHz).
- This subsystem is made up the next elements:
 - □ Reflector, provides an square cosecant elevation pattern.
 - Two <u>feedhorn</u> assembly, the top one (low beam) transmits and receives, and the bottom one (high beam), only receives.
 - Two polarizers, provides vertical linear and right-hand circular polarization (transmission and reception).
 - □ Two target channels (w/g) and two weather channels (coaxial).
 - Mechanical Tilt.
- In addition, it is made by optional elements such as:
 - Dessibility of co-mounting a LVA antenna.
 - □ An obstruction light.
 - \Box A lightning rod.
- Polarization changing and antenna turning monitoring.

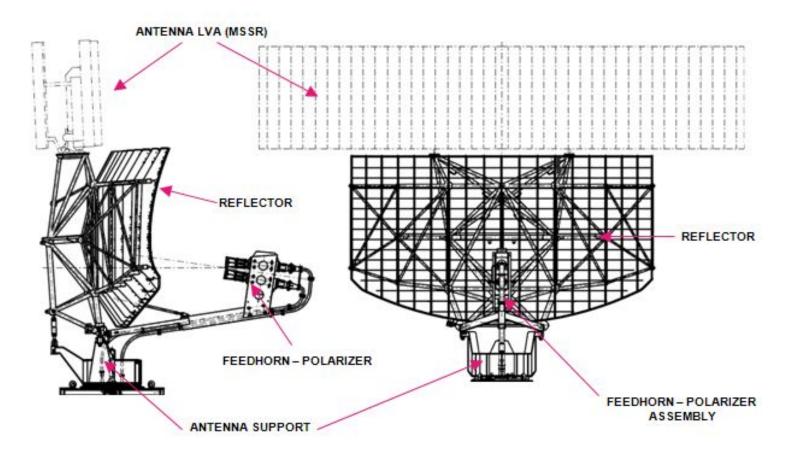
Indra

Features

ELECTRIC REQUIREMENTS			
Pinion:			
Features	Steel		
Bearing Ring - Fixed Case:			
Features	Dual motor, possibility of operation with one motor		
Sensors	Oil level		
Bearing Ring - Mobile Case:			
Features	Mechanical interface for S-Band PSR antenna.		
Features	4 anchoring points and leveling points to adjust antenna tilt.		
Antenna Support:			
Features	Mechanical interface between antenna and driving mechanism.		

Features

ELECTRIC REQUIREMENTS		
Input power	400V Three phases + Neutral	
Input power frequency 50 Hz ± 5% and 60 Hz ± 5%		
Power consumption < 15kVA (when both motors are working)		

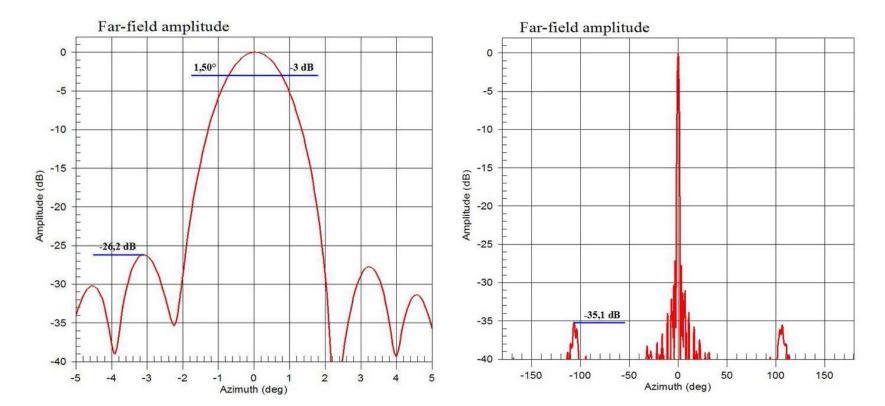

SAFETY DEVICES		
Mechanical Safety switch		
Electrical	Pedestal interlock - disable mechanically the antenna rotation.	

ENVIRONMENTAL CONDITIONS		
Temperature	-40° C to +70 °C	
Wind (Operative)	Up to 30 m/s (≈ 110 km/h)	
Wind (Survival)	Up to 50 m/s (180 km/h)	
Humidity 5% to 100% with condensation		
lcing	Up to 4 mm	

ındra

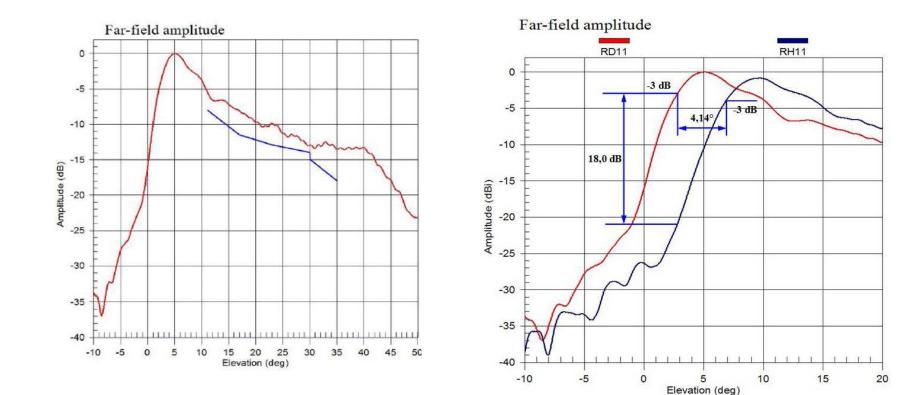
0066605020000MA03_A1

Physical Diagram



Operation

- Antenna element carries on the RF transmission (two pulses: a non-modulated short pulse and a NLFM long pulse generated on EPG and amplified by the transmitter), and the reception of the corresponding echoes.
- Transmission is performed by low beam (feedhorn assembly) and by means of the reflector, the transmission will be according to cosecant square pattern.
- Reception is performed by both beams (high and low). In the typical case:
 - □ High beam reception used for nearby coverage (reducing ground clutter).
 - □ Low beam reception used to further coverage.
- Every horn has two channels:
 - \square 2 wave guide channels \square target high and low beams
 - □ 2 coaxial channels □ weather high and low beams
- Antenna operates with two different polarizations in order to improve detection in case of weather clutter.
 - Delarization selectable: linear or circular.



Azimuth Diagram

Elevation Diagram

Elevation diagram: cosecant squared pattern

Indra

Polarization

- PSR antenna can transmit with two different polarizations.
- Features:
 - □ Transmission polarization: Linear vertical. Right handed circular □ clockwise rotation.
 - Delarizer transmits and receives linear or circular polarization.

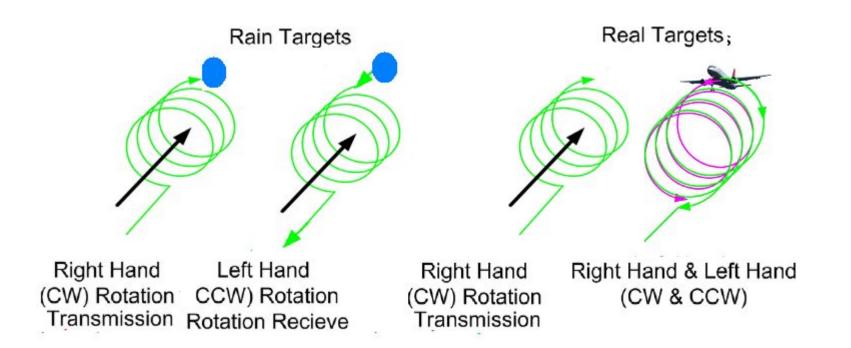
Polarization

POLARIZATION ADVANTAGES.

Symmetric objects (such as raindrops):

- Reflects circularly-polarized waves with the opposite sense of rotation. There is one reflection of the wave.
- □ Reflects lineal polarization in the same sense as it was sent.

Asymmetrical objects (such as aircraft):


- Reflects circularly-polarized waves with the same and the opposite sense of rotation because they are odd and even numbers of reflections.
- □ Reflects lineal polarization in the same sense as it was sent.

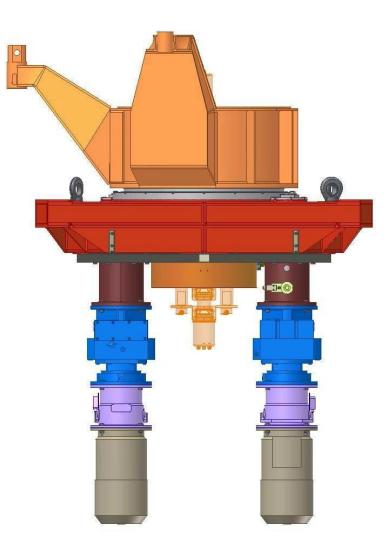
Notice that transmitted circular polarization:

- □ 3 dB of losses in target echoes.
- □ >20 dB in spherical target echoes.

ındra

Polarization

Features

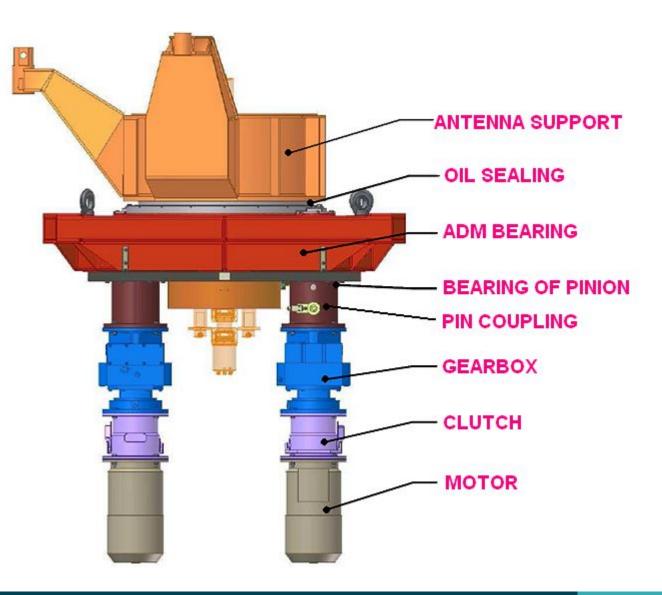

MECHANICAL FEATURES			
Frequency	2.7 – 2.9 GHz		
ICR	20 dB min		
Beamwidth 3 dB azimuth	Low beam 1.45° ± 0.05 High beam >1.3°		
Beamwidth 3 dB elevation	Low beam >4.6° High beam >4.8°		
Gain	Low beam 34dB, min High beam 32.5dB, min		
Backward lobes	-35 dB (in relation with low beam peak)		
Secondary lobes	Low beam -29 dB@±10° to ±30°, max Low beam -33 dB@±30° to ±180°, max High beam -22 dB, max		
VSWR	1.35:1		

ındra

Features

MECHANICAL FEATURES				
Weight	2,764 kg with pedestal (including RJ) 800 kg without pedestal (only antenna)			
Reflector Dimensions	2.8 m x 5 m			
Reflector type	Azimuth parabolic, elevation conformed with grid surface			
Rotation Speed	15 or 12 rpm (configurable)			
Tilt	-3º to 6º			

0066605020000MA03_A1


Pedestal Introduction

Pedestal:

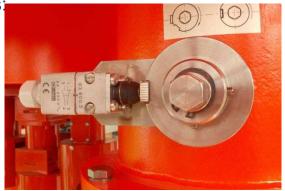
- Electromechanical system which able to give continuous rotation to the antenna.
- □ Consists of a mobile case mounted on a large bearing and supported in its base by a fixed case which, at the same time, supports both power lines (motor + Electrical Clutch).
- The pedestal shall allow the assembly of a rotary joint that transmits and receives the RF signals, AC/DC signals and angular transmission signals from the fixed case to the mobile case.

Physical Diagram

ındra

Description and Elements

- The pedestal subsystem is a electromechanical system which performs continuous antenna rotation (even with a co-mounted MSSR antenna).
- The system consists of the next elements:
 - □ Movement transmitter system:
 - Two 5.5 kW motors with gearbox + coupling Electrical Clutch + pinion and bearing ring.
 - □ Intermediate element:
 - Connects the frame and the antenna drive mechanism with the antenna support.
 - □ Electrical and Mechanical interfaces:
 - Each motor has a Heating and a Thermistor terminal.
 - Oil level sensor.
 - □ Antenna Locking:


Mech

- Antenna can be locked at any angle by the locking screw.
- □ Interlocks:

- Electrical: Pedestal Interlock.
- Indra

Operation

- The pedestal element is made up of two independent motors which allows a constant antenna speed (configurable), controlled by pedestal control panel (DRCG) or remotely by CMS.
- Is able to operate with only one motor.
- For safety purposes, the pedestal consists of mechanical and electrical interlocks:
 - Pedestal Interlock: after stopping the antenna, it can be locked at any angle (fixed turntable in a maintenance procedure, for example). When locked, it is not possible to start rotation.
 - Safety switch is a mechanical interlock, activated manually, blocking antenna turning.

Pedestal status signals, such as oil level or temperature, are monitored in the CMS

Lubrication System

- Oil bath for turntable lubrication and for each drive train reducer.
- Long-life synthetic oil used as lubricant.
- Oil heaters to correct operation: gearbox and motors.
- Sensors to monitor oil level and temperature.
- Status reporting to DRCG:
 - Over Temperature.
 - Oil low level.

Lubrication System

ADM Bearing

ındra

Lubrication System

Gearbox

Bearings of Pinions

ındra

0066605020000MA03_A1

Pedestal Lubrication System

UNIT	FREQUENCY	LUBRICATION TYPE	FILL QUANTITY
Gearbox	12500 hours or 2 years	Shell Omala S4 GX150 or equivalent	7.5 liters
ADM Bearing	12500 hours or 2 years	Castrol Alphasyn GS 220	9.33 liters
Pin Coupling	20000 hours or 2 years	Aero Shell Grease 6	As required

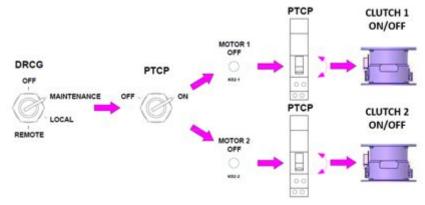
Pedestal

Features

	MOTOR UNIT				
Number of drives	Arives2 redundant driving lines composed of the following elements each one: (1 motor, 1 gearbox, 1 Electrical Clutch and 1 pinion) and one bearing ring. Motor controllers necessary for speed adjustment.				
Rotation speed	12 or 15 revolutions per minute, adjustable.				
Motor/s:					
Output power	5.5 kW				
Features	Equipped with heating elements. Possibility to change motors whitout stopping the antenna.				
Sensors	Over temperature				
Gearbox:					
Lubrication	Oil sight glass				
Features Two-helical gearboxes					
Electrical Clutch:					
Sensors Electrical Clutch Engaged/Disengaged					
Features	Maximum torque 200 N.m				
Features	Possibility of engage/disengage while rotation				

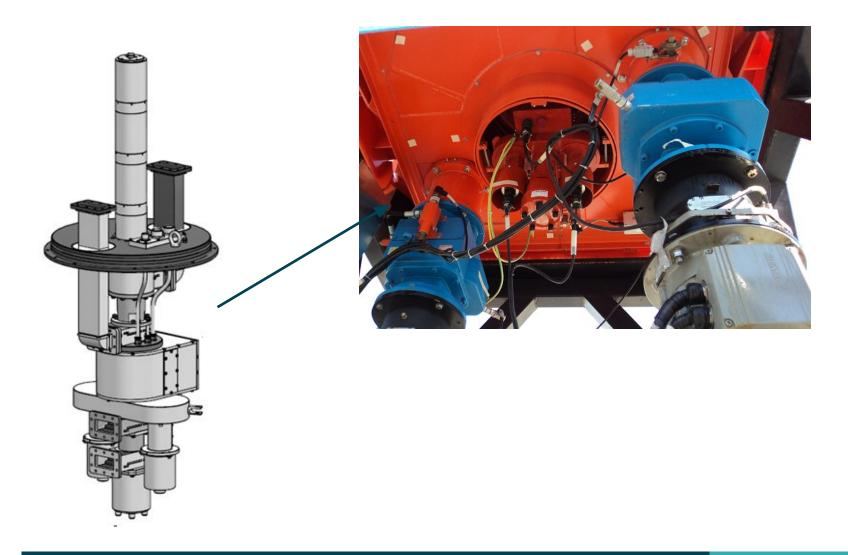
Pedestal – Electromechanical Clutch Features

For safety reasons the engage/disengage of the electromechanical clutches is limited to the switches **only when both motors are stopped**, DRCG is in MAINTENANCE and PTCP is ON, because engage a stopped motor when the pedestal is turning can damage the drive line.


1) **Normal operation**: Clutches are controlled from PLC automatically, motors will be engaged if both motors are stopped or running at the same time. If any of them is stopped while the other is running, the stopped one will be disengaged.

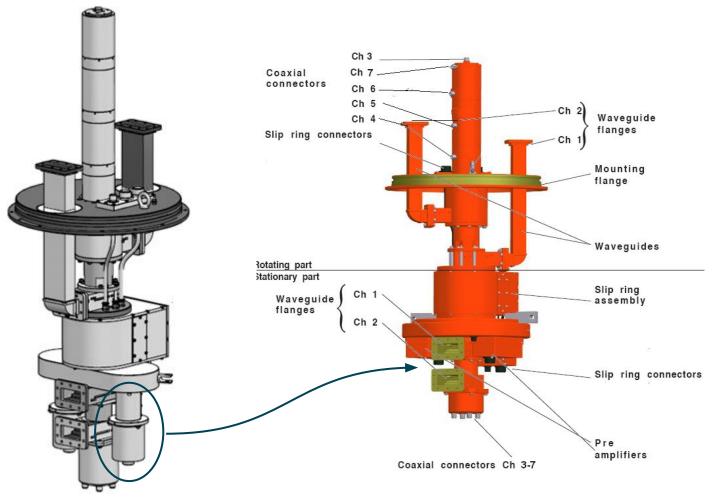
2) Control of clutches from PTCP switches :

- DRCG: MAINTENANCE.
- D PTCP: ON.


The following figure shows the sequence of operation for a correct operation with these switches.

Activation and deactivation sequences for clutches in Maintenance Mode

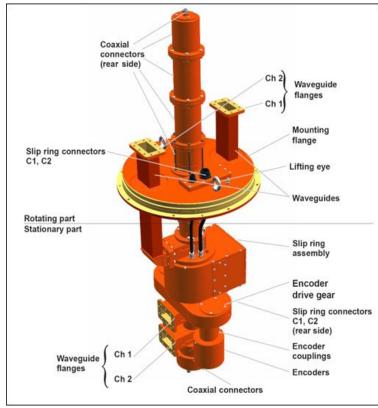
ındra


ındra

Introduction

- The rotary joint is an element of the APG. RF and electrical signals such as control, status and supply passed through it.
- Made up of the next elements:
 - □ 7 channels: 2 for target, 2 for weather and 3 for MSSR.
 - 18 Slip-rings: AC/DC signals transferring between the fixed and the moving part.
 - □ 2 redundant encoders.
- It has a cavity which accommodates a minimum of 18 slip-rings, used to transfer AC/DC signals: control, BITE or feed, towards some elements as the polarizer or the obstruction lights.
- The azimuth synchronism generators, or Encoders, transforms the azimuth antenna pointing into electric signals RS-422 (generates ACPs and ARP signals)

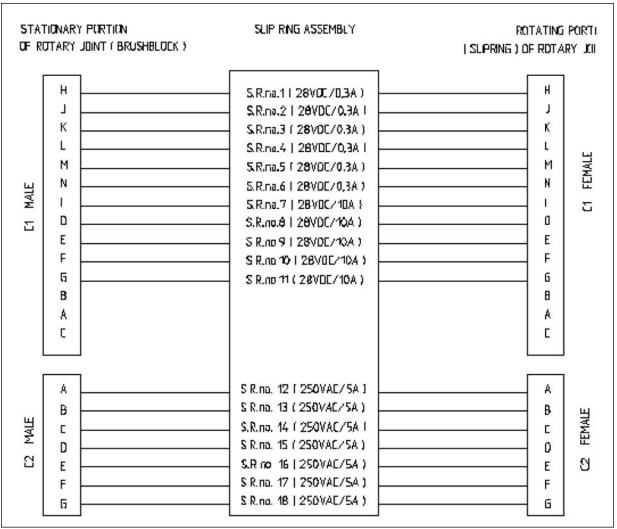
Physical Diagram



Operation

- RF signals are transmitted through antenna Low Beam (waveguide, specified to tolerate high peak power) and received through both beams.
 - High beam signal passes through waveguide in the antenna and rotary joint, and sent to the system through coaxial by means of a waveguide-coaxial coupler after the rotary joint.
 - □ In addition, MSSR channels can pass through rotary joint.
- The slip-rings are a set of AC/DC rings where status, control and supply signals passes through, from DRCG to the antenna.
- These signals are:
 - Polarizer status signals for both beams.
 - □ Polarizer control signals.
 - Obstruction light supplied signals.

Slip-Rings



SLIPRINGS ROTARY JOINT					
C1	DC Signals	C2	AC Signals		
28VDC/0,3A	high beam circular status	250VAC/5A	power obstruction light	line	
28VDC/0,3A	high beam linear status	250VAC/5A	power obstruction light	gnd	
28VDC/0,3A	low beam circular status	250VAC/5A	power obstruction light	neutral	
28VDC/0,3A	low beam linear status	250VAC/5A	power polarizer heater	line	
28VDC/0,3A	28 DC RTN	250VAC/5A	power polarizer heater	neutral	
28VDC/0,3A	28∨ DC polarizer	250VAC/5A	Spare	line	
28VDC/10A	circular polarizer command	250VAC/5A	Spare	neutral	
28VDC/10A	linear polarizer command			d).	
28VDC/10A	28V polarizer 0Vdc (+28VDC RTN)				
28VDC/10A	Spare				
28VDC/10A	Spare				

ındra

0066605020000MA03_A1

Rotary Joint Slip-Rings

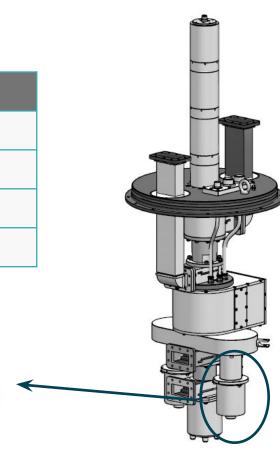
Indra

Encoders

- The rotary joint includes two redundant angular position sensors or encoders.
- Encoder: electromechanical element that converts angular target position into a digital code.
 - □ Precision: 0.022° (14 bit).
 - \square Resolution 14 bits for 360° \square 16,384.
 - \square 2¹⁴ ACPs plus 1 ARP each north-mark.
 - □ Jitter < 10%.
- Controlling/supplied by DRCG and monitored by CMS.

Features

ROTARY JOINT CHANNELS SPECIFICATION							
	Ch1	Ch2	Ch3	Ch4	Ch5	Ch6	Ch7
Operational Frequency (GHz)	2.7 to 2.9	2.7 to 2.9	2.7 to 2.9	2.7 to 2.9	1.01 to 1.11	1.01 to 1.11	1.01 to 1.11
VSWR (MAX)	1.2:1	1.2:1	1.25:1	1.25:1	1.25:1	1.25:1	1.25:1
WOW MAX (variation of VSWR with rotation)	0.05	0.05	0.05	0.06	0.06	0.06	0.06
INSERTION LOSS (dB MAX)	0.15	0.25	0.65	0.65	0.65	0.65	0.65
PEAK POWER (kW)	200	5	5	5	5	5	5
AVERAGE POWER	5kW	75W	75W	75W	-	-	-
AVERAGE POWER (Short Term)	30			3000W	75W	75W	
AVERAGE POWER (Long Term)	-	-	-			75W	75W
SOLATION 60 dB between channels			1				
TEMPERATURE	-40° to 70°						
PRESSURE (max)	30 PSI						


Features

GENERAL SPECIFICATIONS				
Isolation	60 dB between channels, minimum			
Max. Radiation during the peak of power @ a distance of 0,2 m.	0.1 mW/cm2			
Total weight	< 80 Kg			
Height of rotary part	According to the pedestal			
Height of the stationary part	According to the pedestal			
Temperature range (operative)	-40° C to +70° C			
Temperature range (storage)	-40° C to +70° C			
Pressurization	30 PSI max.			
Leakage	25cc/min MAX @ 5 PSI operational temperature range @ 10,000 feet over sea level			
Rotation speed	15 rpm max.			

Features

ENCODERS SPECIFICATIONS			
Number of encoders	2 redundant		
Resolution	16,384 ACP + 1 ARP per revolution => 14 bit		
Accuracy	0.022°		
Jitter	< 10%		

ındra


DRCG Physical and Functional Description

- Main Features
- Elements and Diagrams
- BITE
- Operation
- Features
- Pedestal Top Control Panel (PTCP)
- Junction Box

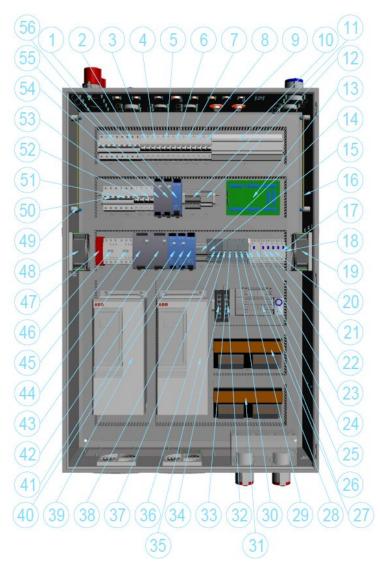
3

DRCG Elements and Diagrams

Front Diagram

Main Features

- Performs Antenna and Pedestal Group control and monitoring.
- Supplies the energy required to encoders and polarizer.
- It has been designed with a safety chain and different control modes: Local, Remote or Maintenance.
- Protects all lines, for both data and power, established between the radar head and the equipment installed in the tower, from
 possible overvoltages caused by lightning.
- Apart from monitoring the status of the equipment connected to the DRCG, it is reported to CMS via LAN communication.
- Controls the antenna turning speed by means of controllers.


Features

Power Supply	400 VAC, 60 A, 50/60 Hz
Control Panel	Pedestal status or motor on-off (possibility to operate with one or two motors) monitoring.
Motor Controllers	Converts input alternate current into direct current to be converted in alternate current again later but with a frequency adjustment to 12 or 15 rpm depending on system configuration.
Power Supplies	24 VDC redundant For supply PLC, LEDs, encoders
PLC/ programmable switch	24 inputs 19 outputs
Communication	Two modules for redundant transmission Modbus/TCP
Safety	Switch to implement the safety chain Emergency button to emergency stopping.
Operation Modes	LOCAL: Starting up from DRCG MAINTENANCE: Allows the key to be removed from the control panel front REMOTE: Starting up from SLG

- It is made up of the next elements, among others:
 - □ Circuit breakers to control the supply of the different elements.
 - Electrical protection devices: AC and DC protection.
 - Two redundant modules to perform communication (acquisition data module): Receive and transmit the status signals (received as 24 Vdc voltage) and performs BITE management by means of ModBus/TCP protocol.
 - Diodes board: To avoid undesired current returns.
 - Two motor controllers: Transforms alternate current into direct current in order to convert it later into alternate but varying its frequency to the determined value. Controls antenna turning speed and motor status.
 - □ A PLC/programmable relay: Controls status signals managed by the DRCG.
 - Two EMC filters: One for each driving line, responsible for attenuating undesired harmonic frequencies.
 - At the front panel: Monitors pedestal status, switching motors on/off etc.

Internal Diagrams

ındra

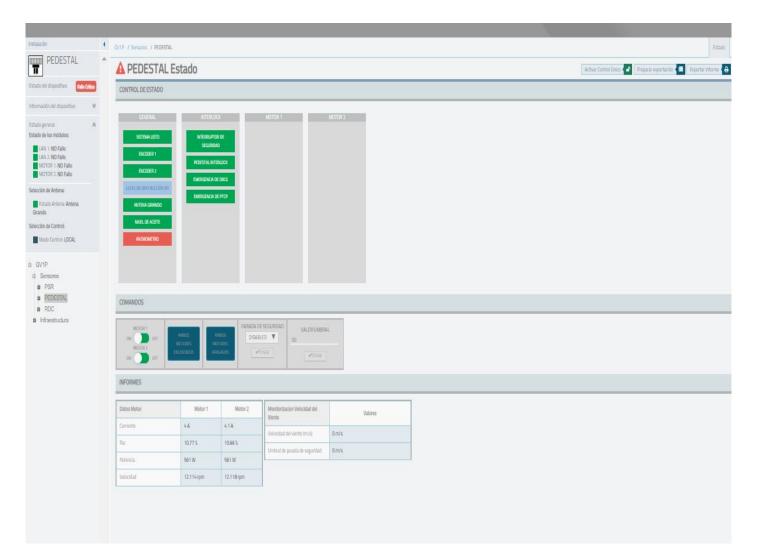
Internal Diagrams

	-	
1	RPS	Redundancy module for 24V Power Supplies
2	CB2	Main breaker 2
3	CB3	Breaker for motor 1 heater
4	CB4	Breaker for motor 2 heater
5	CB5	Breaker for start-up warning, dusk sensor and
		obstruction lights
6	CB6	Breaker for fan B1
7	CB7	Breaker for fan B2
8	CB8	Breaker for power supply for clutch 2
9	CB9	Breaker for power supply for clutch 1
10	RV	Overvoltage Dischargers.
11	TB1	24 VDC and 0 VDC distribution terminals
12	F1 a F5	Protection fuses for 24 VDC
13	DPCB	DRCG interconnection board
14	TB2	Polarizer power supply and control distribution
		terminals
15	CB14	Breaker for polarizer power supply 1
16	E3	Ground for dischargers.
17	K9	Clutch 2 activation relay
18	K10	Clutch 2 heater activation relay
19	B2	Right side fan
20	K8	Clutch 1 heater activation relay
21	K7	Clutch 2 activation relay
22	K6	Obstruction lights activation relay
23	K5	Polarization control contactor
24	S11	Thermostat for fans

Internal Diagrams

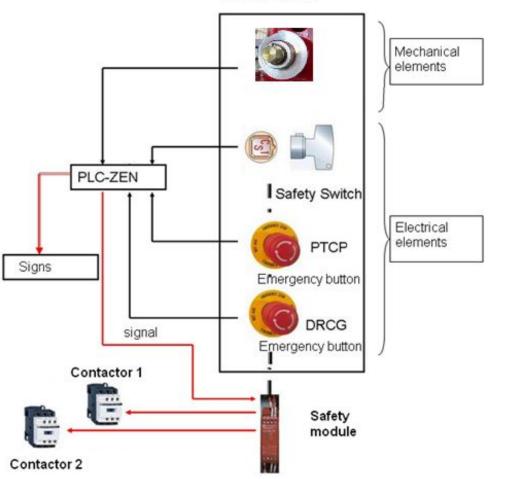
25	K4	Polarizer control activation relay	49	E2	Ground bar for connectors and other elements (except
26	S10	Switch for Motor 2 Heater			dischargers)
27	PLC	Programmable Logic Controller	50	CB10	Breaker for Motor Controller 1
28	KB1	16 channels relays module 1	51	CB11	Breaker for Motor Controller 2
29	S9	Switch for Motor 1 Heater	52	CB12	Breaker for Power Supply 1
30	S8	Switch for Encoder 2	53	CB13	Breaker for Power Supply 2
31	KB2	16 channels relays module 2	54	PS1	24 VDC Power Suply 1
32	SW2	Switch router 2	55	PS2	24 VDC Power Supply 2
33	S7	Switch for Encoder 1	56	CB1	Main breaker
34	SW1	Switch router 1			
35	DRV2	Motor Controller 2			
36	S6	Obstruction lights switch			
37	CB16	Breaker for anemometer power supply			
38	CB15	Breaker for polarizer 2 power supply			
39	DRV1	Motor Controller 1			
40	RDC	Redundancy Module for DC converter of power supply			
		for polarizer			
41	DC2	DC converter power supply for polarizer 2			
42	DC1	DC converter power supply for polarizer 1			
43	PS4	Clutch 2 power supply			
44	PS3	Clutch 1 power supply			
45	K3	Motor Controller 2 Contactor			
46	K2	Motor Controller 1 Contactor			
47	K1	Safety relay			
48	B1	Left side fan			

BITE Connection


BITE signals coming from Antenna and Pedestal Group, are managed by means of the **PLC** firmware. These signals are pedestal status, equipment control, interlocks and controllers status signals.

All signals are received and packed by means of **acquisition data modules**. These signals are transmitted by means of Modbus/TCP protocol through two redundant LAN.

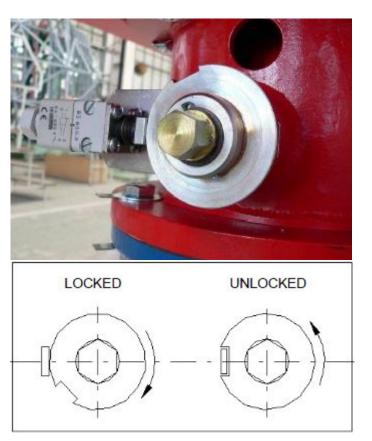
BITE CMS Interface


BITE Alarms Example

ENCODER 1 ON ENCODER 2 ON	Encoder 1 and 2 are switch on.
ENCODER 1 ON ENCODER 2 OFF	Encoder 1 is switched on and encoder 2 is switched off. This status is considered as degraded working of the system, and this alarm will be also represented in oranger in the pedestal box of the SLG main screen.
ENCODER 1 OFF ENCODER 2 ON	Encoder 1 is switched off and encoder 2 is switched on. This status is considered as degraded working of the system, and this alarm will be also represented in orange in the pedestal box of the SLG main screen.
ENCODER 1 OFF	Encoder 1 and 2 are switched off. This status is considered as a critical failure in the system because the radar does not have angular information. This alarm will be also represented with red colour in the pedestal box of the SLG main screen.

BITE Safety Antenna and Pedestal Group Diagram

SAFETY CHAIN



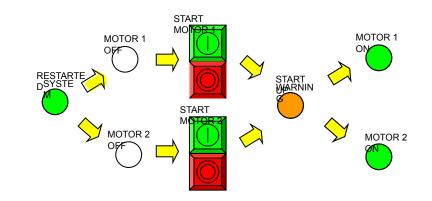
ındra

BITE Safety Switch and Antenna Locking Mechanism

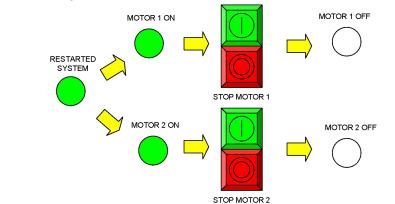
ANTENNA LOCKING

Operation

- Pedestal Control Panel performs the following operations:
 - Antenna turning by means of motors control. It is possible to operate only with one motor.
 - Possibility of cutting energy off by means of emergency buttons.
 - Various independent control modes:
 - **REMOTE:** Control from CMS.
 - **LOCAL:** Control from DRCG frontal panel.
 - MAINTENANCE: Remove the key to use the PTCP.
 - □ Monitors their own devices and also controls equipment status.
 - Each electric line from the radar, either 400 Vac three-phase/230Vac single phase alternate current or 24/28 Vdc direct current, is protected.
 - The system supplies energy to some antenna devices such as encoders, heaters and obstruction lights.


Operation Master-Slave

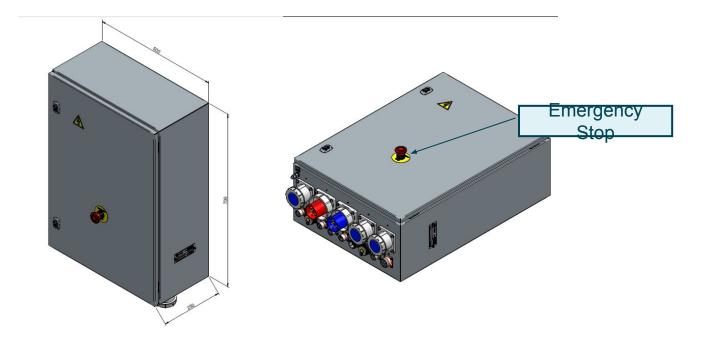
- Two frequency controllers: ABB ACS-800 three phases, AC, 7,5Kw.
 - Convert alternate current into direct current, to change again late into alternate but with different frequency.
- Both motors start using an acceleration ramp and stop by inertia in order not to damage transmission.
- Master-Slave.
 - Used to distribute the wear of both motors and improve the operation in case of adverse weather conditions (torque control).
 - □ First controller which receive the start command is the master.
 - □ Master establishes the speed of the set and transmits to the second one the torque indication to keep same torque in both.



Operation

Starting procedure of both motors:

• Stopped of both motors procedure:



Pedestal Top Control Panel (PTCP) Operation

- PTCP (Pedestal Top Control Panel) is a control panel located in the motor room where pedestal is installed.
- Features:
 - □ PTCP DRCG connection is complete. However, simultaneous controlling using both units is incompatible with safety □ **Independently controlled.**
 - □ PTCP is a reduced version of the DRCG for maintenance purposes.

Pedestal Top Control Panel (PTCP) Frontal Panel

DRCG PHYSICAL AND FUNCTIONAL DESCRIPTION Pedestal Top Control Panel (PTCP) Footured

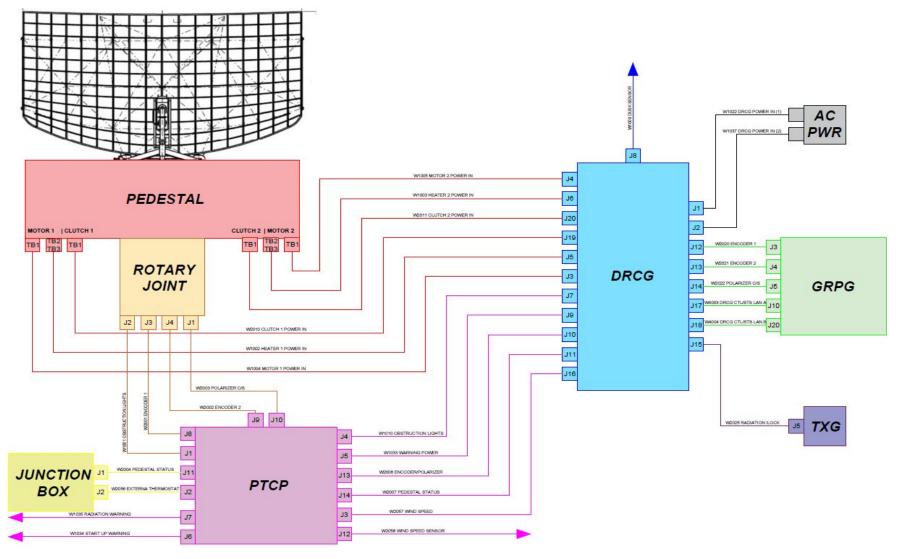
Features

Energy	400 VAC, 60 A, 50/60 Hz
Place	Next to pedestal
Main Function	Signal transmission from DRCG to pedestal and viceversa. Used for maintenance purposes. Sensor and other pedestal elements energy centralization.
Control Panel	Pedestal status, on-off motors, encoders, interlock and other signals monitoring.
Operation	Start up/stop only are enabled by removing the key in maintenance mode in DRCG.
Safety	Emergency button for emergency stop

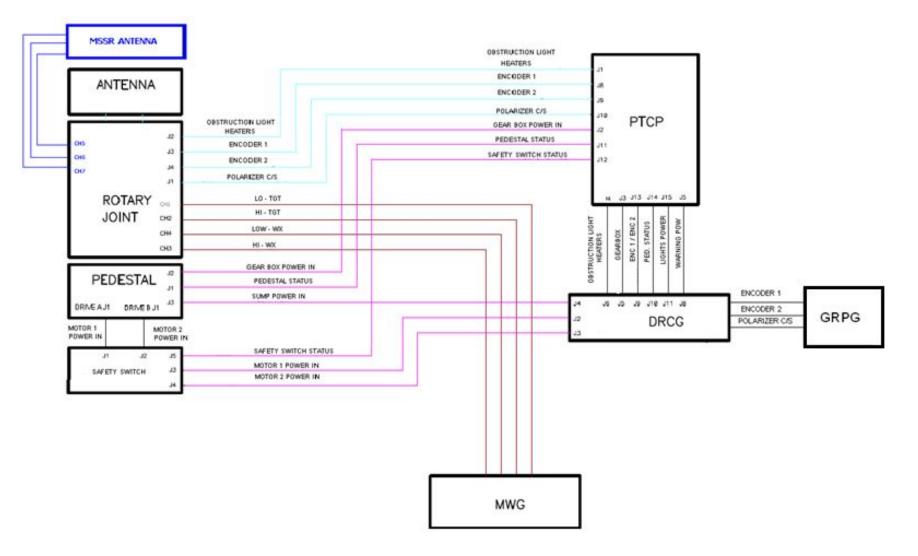
Junction Box

Features

 Internally is composed of interconnection terminals and a thermostat with a temperature probe that allows the activation of the heaters when outside temperature is below 10°C.



APG Interfaces



APG Interfaces

APG Interfaces

