Условия достижимости, базы дуг и растущие деревья

Лекция № 10

СОДЕРЖАНИЕ

Часть 1. Достижимость вершин.

Часть 2. Базы дуг.

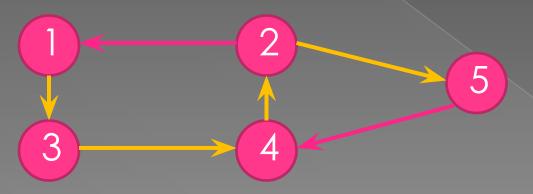
Часть 3. Растущие ориентированные деревья.

Часть 1

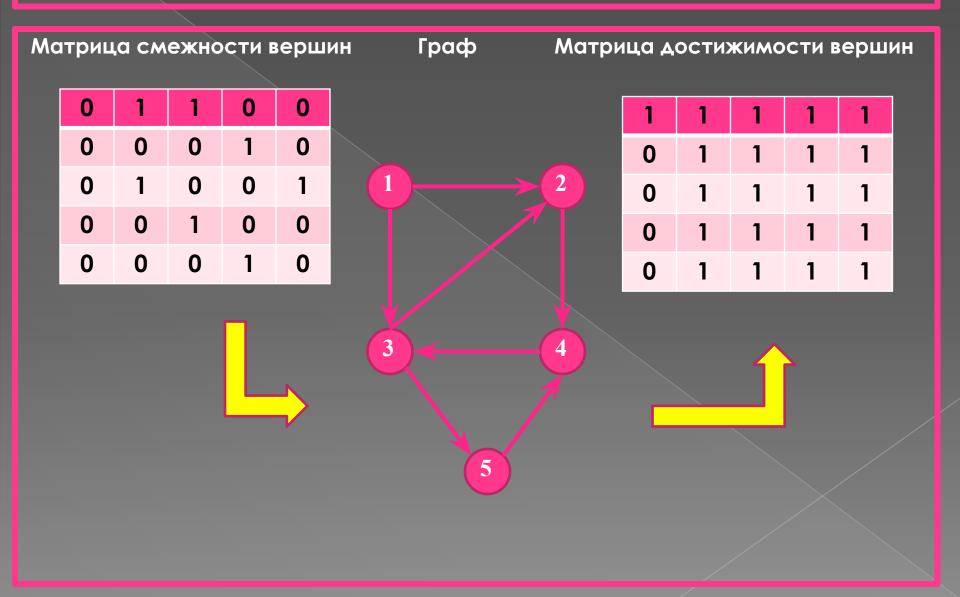
УСЛОВИЯ ДОСТИЖИЛЛОСТИ

Достижимость вершин

На ориентированном графе G(X,U) t-я вершина считается достижимой из вершины s-ой, если существует хотя бы один путь, ведущий из s-ой вершины в t-ю. Так, 5-я вершина достижима из 1-й.



МАТРИЦА ДОСТИЖИМОСТИ ВЕРШИН



Часть 2

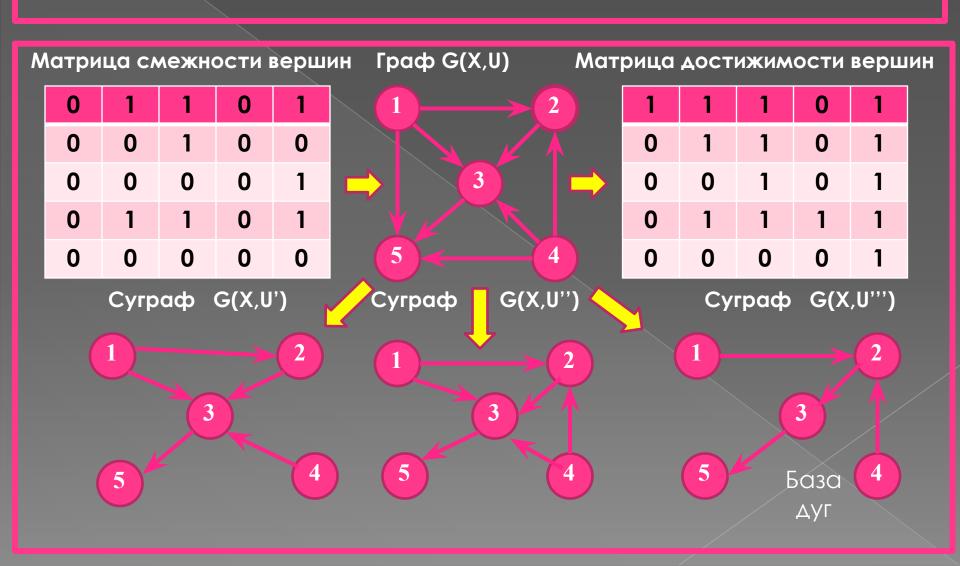
Базы дуг

БАЗА ДУГ - ОПРЕДЕЛЕНИЕ

Базой дуг ориентированного графа G(X,U) с матрицей достижимости вершин «М» называется такое подмножество дуг U' множества U, что:

- граф G(X,U') обладает такой же
 матрицей достижимости вершин М', что
 и исходный граф G(X,U).
- Удаление любой дуги, принадлежащей базе U', изменяет условия достижимости вершин.

ПРИМЕР 1

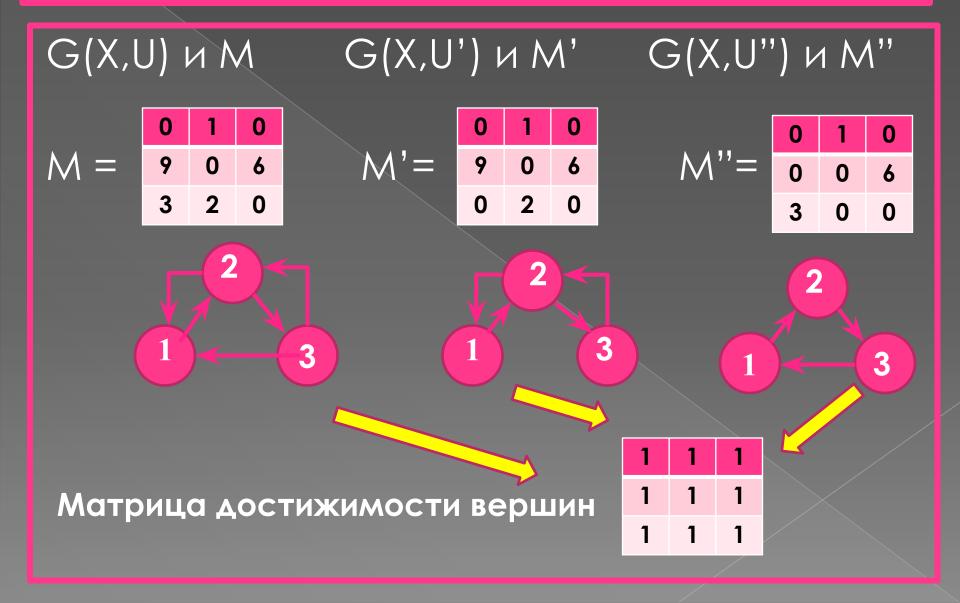


МИНИМАЛЬНАЯ БАЗА ДУГ - ОПРЕДЕЛЕНИЕ

Минимальной базой дуг взвешенного ориентированного графа G(X,U) с матрицей достижимости вершин «М» называется такое подмножество дуг U'множества U, что:

- граф G(X,U') обладает такой же матрицей достижимости вершин М', что и исходный граф G(X,U);
- суммарный вес дуг подмножества U' минимален.

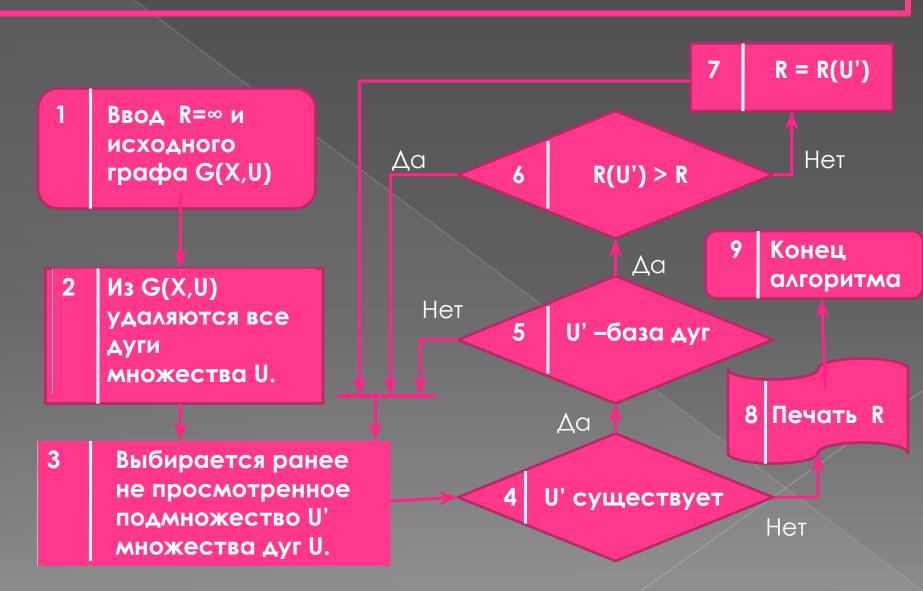
ПРИМЕР 2



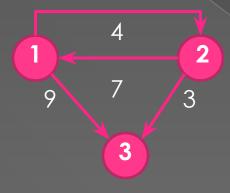
СВОЙСТВА БАЗ ДУГ

- Теорема 1. Каждый ориентированный граф обладает по крайней мере одной базой дуг.
- **Теорема 2** (Кёнига): Ориентированный граф без контуров обладает единственной базой дуг.
- Теорема 3 (Гольдберга): Число дуг любой базы дуг U' ориентированного графа G(X,U), множество контуров которого не пусто, не превышает величины Y = 2(| X | -1), т.е. | U' | ≤ 2 | X | -2.

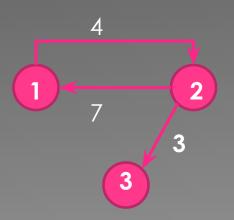
АЛГОРИТМ ПОИСКА МИНИМАЛЬНОЙ БАЗЫ ДУГ



пример 3



Исходный граф G(X,U)

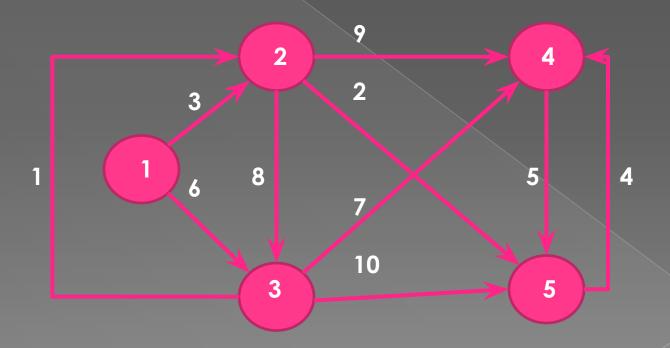


Nº	Z(1,3)	Z(2,3)	Z(1,2)	Z(2,1)	R
1	0	0	0	1	∞
2	0	0	1	0	∞
3	0	0	1	1	∞
4	0	1	0	0	∞
5	0	1	0	1	∞
6	0	1	1	0	∞
7	0	1	1	1	14

Суграф G(X,U') с минимальной базой дуг

САМОСТОЯТЕЛЬНО:

 Определить минимальную базу дуг на графе G(X,U):



Часть 3

Растущие ориентированные деревья

МИНИМАЛЬНЫЕ РАСТУЩИЕ ОРИЕНТИРОВАННЫЕ ДЕРЕВЬЯ

Содержательная постановка задачи: требуется на заданном взвешенном ориентированном графе G(X,U) выделить подграф - дерево G'(X',U') с корнем в заданной s-ой вершине такой, что:

- Все вершины, достижимые из s-й вершины на G(X,U), также достижимы из той же вершины на G'(X',U').
- Суммарный вес дуг множества U' минимален.

ОБОЗНАЧЕНИЯ И ОПРЕДЕЛЕНИЯ

Обозначения	Определения
(i,j) -	дуга, идущая из і-й вершины в j-ю на G(X,U);
Z(i,j) -	булева переменная, отвечающая дуге (i,j);
r(i,j) -	вес дуги (i,j);
$L_d(s,t)$ –	d – й путь из s – й вершины в t – ю на $G(X,U)$
U'	искомое подмножество дуг множества U;
G'(X',U') -	искомое дерево с заданными условиями достижимости вершин из s – й вершины, причем справедливо: $X' \subseteq X; U' \subset U;$
G(X,U) -	исходный граф;
$L_d(s,t)$ –	d – й путь из s – й вершины в t – ю на $G'(X',U')$;
X' -	Все вершины, достижимые из s – й на $G(X,U)$.

ФОРМАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ

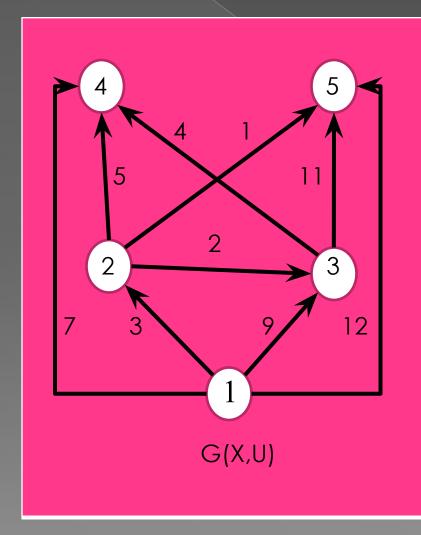
$$\begin{cases} \sum_{(i,j)\in U'} r(i,j)z(i,j) \to \min; \\ \forall x_t \in X : signum \left\{ \sum_{d} \prod_{L_d(s,t)} z(i,j) \right\} = signum \left\{ \sum_{d} \prod_{L_d(s,t)} z(i,j) \right\}; \\ \prod_{(i,j)\in U'} z(i,j) = 1; \\ \forall (i,j)\in U : z(i,j) = 1,0. \end{cases}$$

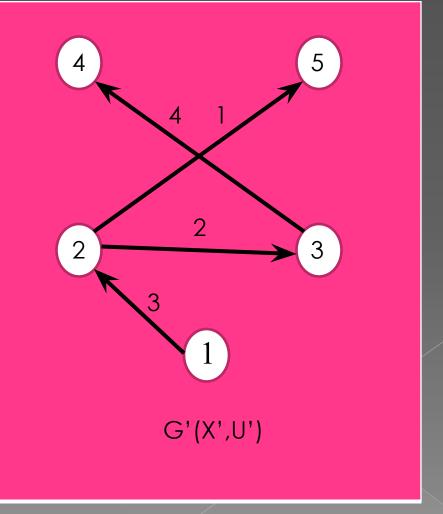
СВОЙСТВА МИНИМАЛЬНЫХ РАСТУЩИХ ДЕРЕВЬЕВ

- Величина $y = \sum_{i} \min_{i} r(i, j)$ является нижней границей суммарного веса дуг минимального дерева.
- Если граф G(X,U) не содержит контуров, то

$$y = \sum_{i} \min_{i} r(i, j)$$
 отвечает оптимальному значению целевой функции. (Сравнить с теоремой Кёнига).

ПРИМЕР 4





АЛГОРИТМ ВЫДЕЛЕНИЯ МИНИМАЛЬНОГО ДЕРЕВА НА ГРАФЕ БЕЗ КОНТУРОВ

Шаг 1. На исходном графе G(X,U) удаляются все вершины, в которые отсутствуют пути из s-й вершины, являющейся корнем дерева. Полученный граф вновь обозначаем G(X,U).

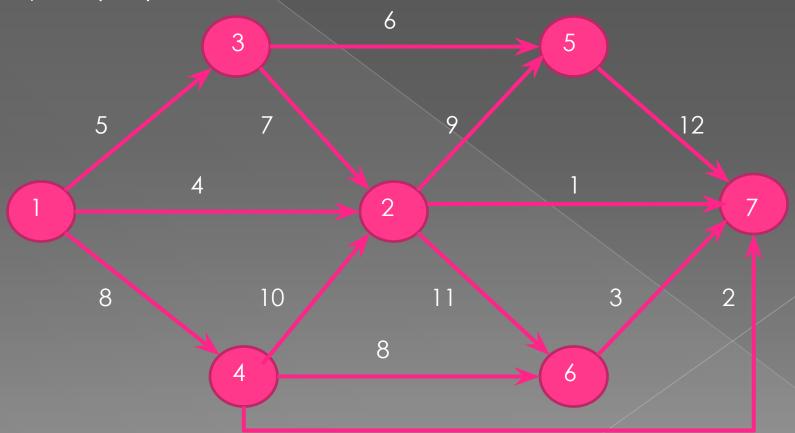
Шаг 2. $\forall j \neq s : r(p, j) = \min_{i} r(i, j)$.

Шаг 3. Дуги (p,j), определенные на предыдущем шаге, принадлежат множеству U'.

Шаг 4. Конец алгоритма.

САМОСТОЯТЕЛЬНО:

Выделить минимальное дерево с корнем в 1-й вершине на графе G(X,U):



ПЕРСОНАЛЬНЫЕ ЗАДАНИЯ

- На полученном орграфе:
- 1. Определить минимальный разрез.
- 2. Удалить дуги минимального разреза на исходном графе G(X,U).
- 3. На полученном графе G'(X',U') построить:
- А) матрицу смежности вершин;
- Б) минимальную базу дуг
- В) минимальное растущее дерево с корнем в вершине – источнике.

ПЕРСОНАЛЬНЫЕ ЗАДАНИЯ 1 - 9

0	1	5	9
0	0	3	9
4	7	0	2
6	8	2	0
	No	1	

0	2	8	3
2	0	7	6
5	9	0	1
0	4	0	0
	No	2	

0	8	9	1
3	0	4	7
4	5	0	2
1	6	0	0
	No	3	

0	2	9	4
6	0	5	7
0	3	0	8
8	1	0	0
	No	4	

0	2	6	3
9	0	8	4
5	1	0	0
0	7	5	0
	No	6	

0	3	7	9
0	0	5	4
3	1	0	8
2	6	9	0
	Ma	7	

0	3	7	8
5	0	2	4
0	4	0	6
2	5	1	0
	No	8	

0	7	9	1
2	0	5	1
6	3	0	8
2	0	4	0
	Mo	0	

ПЕРСОНАЛЬНЫЕ ЗАДАНИЯ 10 - 18

0	1	5	9
0	9	3	0
4	7	0	2
6	8	2	0
	No	10	

0	2	8	3
2	0	7	6
5	9	0	1
0	4	0	0
	No	11	

0	8	9	1
3	0	4	7
4	5	0	2
1	0	6	0
	No	12	

0	2	9	4
6	0	5	7
3	0	0	8
8	1	0	0
	No	13	
	\		

0	2	6	13
9	0	8	4
5	1	0	0
0	7	5	0
	No	15	

0	3	7	9
0	0	5	4
3	1	0	8
0	6	9	0
	No	16	

0	3	7	8
5	0	2	4
0	4	0	16
2	5	1	0
	No	17	

0	7	9	1
2	0	5	1
6	3	0	8
0	2	4	0
	Mo	10	

ПЕРСОНАЛЬНЫЕ ЗАДАНИЯ 19 - 27

0	1	5	9
0	0	12	9
4	7	0	2
6	8	2	0
	No	19	

0	2	8	3
2	0	7	6
5	9	0	1
0	4	5	0
	No	20	

0	8	9	1
3	0	4	7
4	5	0	2
1	9	3	0
	No	21	

0	2	9	4
6	0	5	5
3	3	0	8
2	1	0	0
	No	22	

0	10	9	4
7	0	3	8
0	2	0	1
4	6	5	0
	No	23	

0	<u>7</u> №	24	0
5	1	0	9
9	0	8	4
0	2	6	3

0	3	7	9
0	0	15	4
3	1	0	8
2	6	9	0
	Ma	25	

0	3	7	8
5	0	2	4
9	4	0	6
2	5	1	0
		26	

0	7	9	10
2	0	5	1
6	3	0	8
2	12	4	0
	Ma	27	

Алгоритм поиска минимального дерева на орграфе с бикомпонентами: шаги 1 - 3

- Шаг 1. На исходном графе G(X,U) удаляются все вершины, в которые отсутствуют пути из s-й вершины, являющейся корнем дерева. Полученный граф вновь обозначаем G(X,U).
- Шаг 2. Выбирается дуга с минимальным весом, заходящая в каждую вершину подмножества

 $X \setminus x_s$.

Шаг 3. Если на множестве выбранных дуг есть дуга (s,j), исходящая из s-й вершины, то перейти к шагу 4, в противном случае – к шагу 6.

Алгоритм поиска минимального дерева на орграфе с бикомпонентами: шаги 4 - 6

- Шаг 4. Вершина j-я «стягивается» в s-ю. Если при этом граф «стянулся» в одну вершину, то перейти к шагу 9, в противном случае к шагу 5.
- Шаг 5. Если образуются пары параллельных и согласно ориентированных дуг, то остаётся одна из них, вес которой меньше. Перейти к шагу 2.
- Шаг 6. Каждой j-й вершине (j \neq s) присваивается потенциал p(j); $\forall j \neq s : p(j) = r(i, j) * \min_{q \neq i} r(q, j)$, где r(i,j)* дуга, выбранная на шаге 2 последней итерации.

Алгоритм поиска минимального дерева на орграфе с бикомпонентами: шаги 7 - 9

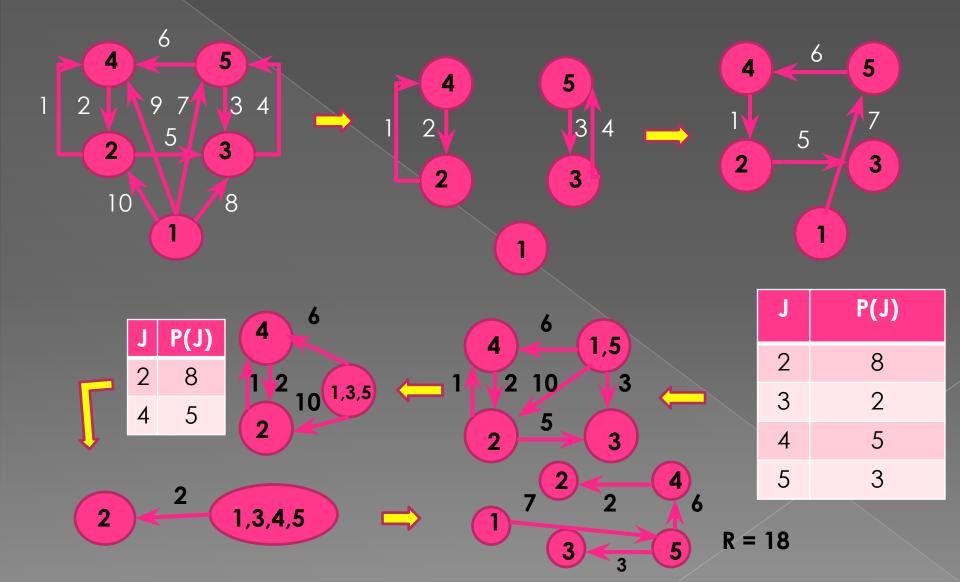
- Шаг 7. На множестве вершин $X \setminus x_s$ выбирается такая, потенциал которой минимален.
- Шаг 8. Полагая, что выбранная на шаге 7 вершина является ј-й, выполняются следующие две операции: дуга (i,j), помеченная звездочкой «*», теряет эту пометку, а дуга (k,j), такая, что:

 $r(k,j) = \min_{q \neq i} r(q,j)$

её приобретает. Перейти к шагу 3.

Шаг 9. Конец алгоритма. «Стянутые» дуги образуют минимальное дерево.

ПРИМЕР 5



САМОСТОЯТЕЛЬНО:

Построить минимальное дерево с корнем в 1-й, 2-й, ..., 7-й вершине на графе G(X,U):

