
Code quality

pH.D. Zenoviy Veres
Solution Architect

Assistant Professor @ NULP

Tell me, what is a clean code for you?

for (i = 0;i < strlen(line);i++) {
 short char_code = isupper(line[i]) ? line[i] - 64 :
line[i] - 96;
 if (char_code > 0 && char_code < 27) {
printf("%c", isupper(line[i]) ?
((char_code + step) % 26 + 64) : ((char_code + step)
% 26 + 96));
 } else {
 printf("%c", line[i]);
 }
 }

void CEquation::trio(double array[][rt+1],double alfa[][rt+1])
{

for (int L = 0; L<rt-1;L++)
{

for(int k = 1+L; k<rt+1; k++)
{

alfa[L][k] = - (array[L][k]/array[L][L]);
for (int i=L+1;i<rt;i++)

array[i][k] = array[i][k] + array[i][L]*alfa[L][k];
}

}
alfa[rt-1][rt+1-1]= - array[rt-1][rt+1-1]/array[rt-1][rt-1];

}

Good vs Bad

How to write beautiful code

There are two parts to learning

craftsmanship: knowledge and work.

You must gain the knowledge of

principles, patterns, practices, and

heuristics that a craftsman knows,

and you must also grind that

knowledge into your fingers, eyes,

and gut by working hard and

practicing.

 (Robert C. Martin, Clean code)

80% of the lifetime cost of a piece of software goes to
maintenance.
Hardly any software is maintained for its whole life by the
original author.
Code quality improve the readability of the software, allowing
engineers to understand new code more quickly and thoroughly.

Why its important?

Why do we see a bad code?

Time: I don't have a time
We never seem to have time to do it,
but always seem find time to redo it?!

Knowledge: what is a good code?
Tools: I don’t know about it
Skills: I can’t do it

Naming is important

The name should represent the developer’s
idea

int d; // time from beginning

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;

The name should represent the developer’s
idea

public List<int[]> getThem() {
List<int[]> list1 = new ArrayList<int[]>();
for (int[] x : theList)

if (x[0] == 4)
list1.add(x);

return list1;
}

What kinds of things are in theList?

What is the significance of the zeroth subscript of an
item in theList?

What is the significance of the value?

How would I use the list being returned?

The name should represent the developer’s
idea

public List<int[]> getFlaggedCells() {
List<int[]> flaggedCells = new ArrayList<int[]>();
for (int[] cell : gameBoard)

if (cell[STATUS_VALUE] == FLAGGED)
flaggedCells.add(cell);

return flaggedCells;
}

Use meaningful difference

public static void copyChars(char a1[], char a2[]) {
for (int i = 0; i < a1.length; i++) {

a2[i] = a1[i];
}

}

VS

source and destination are used for the argument
names

Use meaningful names

private Date genymdhms;
private Date modymdhms;
private final String pszqint = "102";

VS

private Date generationTimestamp;
private Date modificationTimestamp;;
private final String recordId = "102";

Use searchable names

#define CFT_CNT 13
#define SSIM_CLS_CNT 4096
#define PX_BUFF_CNT 10000

Class names

Classes and objects should have noun or noun phrase names like Customer,
WikiPage, Account, and AddressParser.

Avoid words like Manager, Processor, Data, Info in the name of a class.

A class name should not be a verb.

Method names

Methods should have verb or verb phrase names like postPayment
deletePage, or save.
Accessors, mutators, and predicates should be named for their value and prefixed
with get, set , and is according to the javabean standard.

Method Names Should Say What They Do

Date newDate = date.add(5);

Would you expect this to add five days to the date? Or is it weeks, or hours?
Is the date instance changed or does the function just return a new Date without changing the old
one?
You can’t tell from the call what the function does.

One function – one operation

Functions (aka methods)

Functions (aka methods)

F1:Too Many Arguments
Functions should have a small number of arguments. No argument is best,
followed by one, two, and three.

F2: Output Arguments
Output arguments are counterintuitive. Readers expect arguments to be
inputs, not outputs. If your function must change the state of something,
have it change the state of the object it is called on.

Functions (aka methods)

F3: Flag Arguments
Boolean arguments loudly declare that the function does more than one
thing. They are confusing and should be eliminated

F4: Dead Function
Methods that are never called should be discarded. Keeping dead code
around is wasteful. Don’t be afraid to delete the function. Remember, your
source code control system still remembers it.

Functions (aka methods)

I’ll leave the project when complete all my
technical debt

Code review

Each team member review the code and writing
comments/recomendations

It’s a primary responsibility of TL/Senior at the project

Code have to be understandable by your colleagues
(from other teams)

Good news – we have automatic code quality check
tools available

Comments

•C1: Inappropriate Information
• Change histories(?)
• Authors(?)
• Date of last update(?)

•C2: Obsolete Comment
• It is best not to write a comment that will become obsolete
• If you find an obsolete comments – update or erase it ASAP!

Comments

•C3. Redundant Comment
• Don’t comment what a code does – I can read the
code for that—keep it DRY

Example 1
i++; // increment i

What about example 2?
/**

* @param sellRequest

* @return

* @throws ManagedComponentException

*/

public SellResponse beginSellItem(SellRequest sellRequest)

throws ManagedComponentException

Comments

•C4: Poorly Written Comment
• Comments should say Why or purpose, not how

•C5: Commented-Out Code
• Who knows how old it is? Who knows whether or not it’s meaningful? Yet
no one will delete it because everyone assumes someone else needs it or
has plans for it.

General

•G1: Multiple Languages in One Source File
• a Java source file might contain snippets of XML,
HTML, YAML, JavaDoc, English, JavaScript or

• in addition to HTML a JSP file might contain Java, a
tag library syntax, English comments, Javadocs, XML,
JavaScript, and so forth.

• The ideal is for a source file to contain one, and only
one, language. Realistically, we will probably have to
use more than one.

General

•G5: Duplication
• Every time you see duplication in the code, it represents a missed
opportunity for abstraction.

• Result of copy/paste programming – to separate method
• switch/case or if/else chain that appears again and again in various
modules, always testing for the same set of conditions – to use
polymorphism

General

•G5: Duplication (cont)
• modules that have similar algorithms, but that don’t share similar lines of
code – to use Template Method or Strategy design patterns.

Find and eliminate duplication wherever you
can!

General

•G6: Code at Wrong Level of Abstraction
• Good software design requires that we separate concepts at different
levels and place them in different containers

General

•G7: Base Classes Depending on Their Derivatives
• The most common reason for partitioning concepts into base and
derivative classes is so that the higher level base class concepts can be
independent of the lower level derivative class concepts.

General

•G9: Dead Code
• You find it in the body of an if statement that checks for a condition that
can’t happen. You find it in the catch block of a try that never throws. You
find it in little utility methods that are never called or switch/case
conditions that never occur.

General

•G11: Inconsistency
• If you do something a certain way, do all similar things in the same way.
• If you name a method processVerificationRequest, then use a similar
name, such as processDeletionRequest, for the methods that process
other kinds of requests.

General

•G23: Prefer Polymorphism to If/Else or Switch/Case
• “ONE SWITCH” rule:

There may be no more than one switch statement for a given type
of selection. The cases in that switch statement must create
polymorphic objects that take the place of other such switch
statements in the rest of the system.

General

•G28: Encapsulate Conditionals
if (shouldBeDeleted(timer))

 is preferable to

if (timer.hasExpired() &&
!timer.isRecurrent())

General

•G29: Avoid Negative Conditionals

if (buffer.shouldCompact())

is preferable to

if (!buffer.shouldNotCompact())

General

•G35: Keep Configurable Data at High Levels

One more

•Clear, not Clever
• Don’t be clever, instead be clear

“I never make stupid mistakes. Only very, very clever ones”
John Peel

What is “code smell”?

Wiki say:
In computer programming, code smell is any symptom in the source
code of a program that possibly indicates a deeper problem. Code smells are
usually not bugs—they are not technically incorrect and don't currently
prevent the program from functioning. Instead, they indicate weaknesses in
design that may be slowing down development or increasing the risk of bugs
or failures in the future.

The most “popular”
code smells

Duplication Improper use of inheritance

Unnecessary complexity Convoluted code

Useless/misleading comments Tight coupling

Long classes Over abstraction

Long methods Design Pattern overuse

Poor naming Trying to be clever

Code that’s not used …

Bad vs. Clean code

•What is the clean code?
•What is the bad code?

•Characteristics of quality code
•Metrics to measure quality
•Ways to identify and build quality

What do you know now?

•What is Code Smell
• It’s a feeling or sense that something is not right in the code
• You can’t understand it
• Hard to explain
• Does some magic

•Can we measure it?

How to improve code quality?

Practices

Coding Standard

Code Review

Unit Testing

Agile

BDD

TDD

Refactoring

Mentorship

Continuous Integration

...

Design Principals

GOF Design Patterns

SOLID Design Principal

GRASP

...

Tools

Stylecop

FxCop

Resharper

Ncover

Ndepend

Sonar

...

Thank you for attention!

www.iot.lviv.ua

www.facebook.com/iotlvivua

viruslviv@gmail.com

