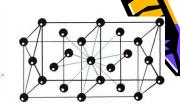





Подальше положишь, поближе возьмешь.

Как аукнется, так и откликнется.


материальные (физические, предметные модели:



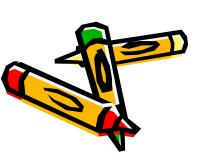








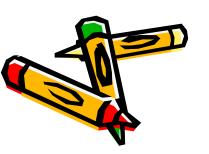
- информационные модели представляют собой информацию о свойствах и состоянии объекта, процесса, явления, и его взаимосвязи с внешним миром:
  - вербальные словесные или мысленные
  - знаковые выраженные с помощью формального языка
    - 🗅 графические (рисунки, схемы, карты, ...)
    - 🗆 табличные
    - математические (формулы)


рогические (различные варианты выбора действий на основе анализа условий)

специальные (ноты, химические формулы)

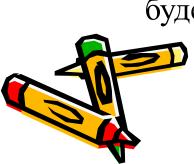
### Величины и зависимости между ними

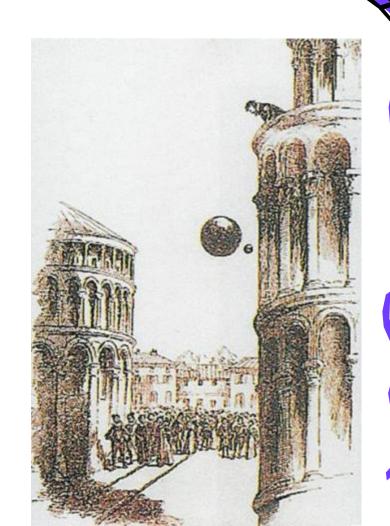
#### Примеры:


- 1. Время падения тела на землю зависит от его первоначальной высоты;
- 2. Давление газа в баллоне зависит от его температуры;
- 3. Уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.



#### Основные свойства величин



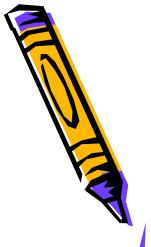


- 1. Имя: смысловое («давление газа») и символическое (Р)
- 2. Значение: постоянная величина (константа) или переменная
- 3. Тип: числовой, символьный, логический



### Время падения тела на землю зависит от его первоначальной высоты

t(c) – время падения; H (м) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/c²) будем считать константой






#### Давление газа в баллоне зависит от его температуры

 $P(H/M^2)$  — давление газа;  $t(^{\circ}C)$  — температура газа. Давление при нуле градусов  $P_0$  будем считать константой для данного газа.







## Уровень заболеваемости жителей город бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе

Загрязненность воздуха будем характеризовать концентрацией примесей — С (мг/м³). Единица измерения — масса примесей, содержащаяся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей

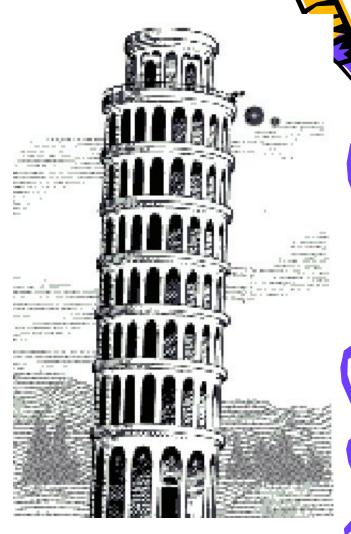


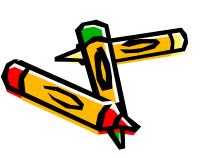


#### Математическая модель

Это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики

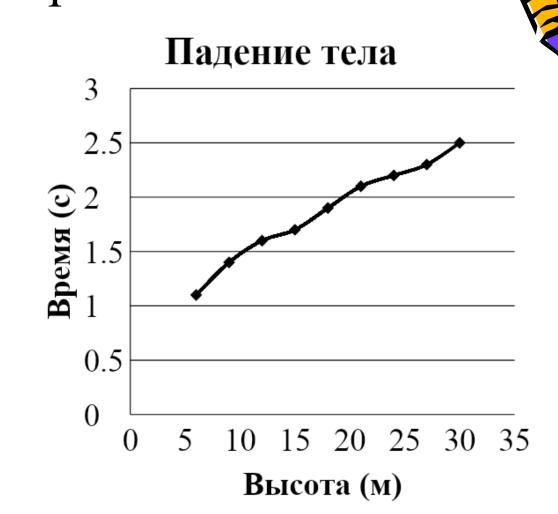
$$t = \sqrt{\frac{2H}{g}}$$


$$P = P_0 \left( 1 + \frac{t}{273} \right)$$



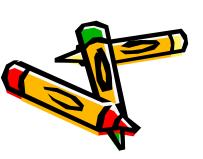

Табличные и графические модели

Проверим закон свободного падения тела экспериментальным путем.

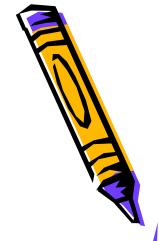

Будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время его падения.



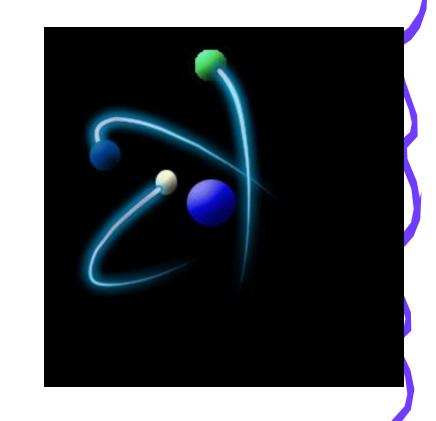



#### Таблица и график результатов эксперимента

| Н, м | <i>t</i> , <i>c</i> |
|------|---------------------|
| 6    | 1,1                 |
| 9    | 1,4                 |
| 12   | 1,6                 |
| 15   | 1,7                 |
| 18   | 1,9                 |
| 21   | 2,1                 |
| 24   | 2,2                 |
| 27   | 2,3                 |
| 30   | 2,5                 |



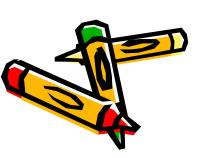

#### Вывод:


- 1. Существует три способа моделирования величин: функциональный (формула), табличный и графический;
- 2. Формула более универсальна; имея формулу, можно легко создать таблицу и построить график



# Динамические модели - это информационные модели, которые описывают развитие систем во времени.




В физике это движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций.



#### Задание

Представьте математическую модель зависимости давления газа от температуры  $P = P_0 \bigg( 1 + \frac{t}{273} \bigg)$ 

в виде табличной и графической модели, если известно, что при температуре 27 С давление газа в закрытом сосуде было 75 кПа.



#### Источники:

- Информатика и ИКТ. Базовый уровень: учеб. для 10-11 классов/ И. Г. Семакин, Е. К. Хеннер. М.: БИНОМ, 2008
- <a href="http://otvet.mail.ru/question/83642685">http://otvet.mail.ru/question/83642685</a> задача для закрепления материала
- <a href="http://static.diary.ru/userdir/1/6/2/4/16246/50947407.jpg">http://static.diary.ru/userdir/1/6/2/4/16246/50947407.jpg</a> изображение падения шарика
- http://img2.board.com.ua/a/2000446004/wm/2-gazovyie-b allonyi.jpg - изображение баллонов с газом
- http://www.svarprof.ru/media/gallery/2008-04-29/6-6.jpg
   изображение газовых редукторов

http://www.1mir.ru/upload/shop\_1/2/6/5/item\_26544/shop\_nems\_catalog\_image26544.jpg - изображение газовых баллонов

- http://static.ngs.ru/news/preview/087e72e8b9b67d3798
   54aa0df4e0fd143eb33b\_750.jpg изображение смога города
- <a href="http://rpn-rd.ru/cache/5006af534b69a2c6e977adeb242921">http://rpn-rd.ru/cache/5006af534b69a2c6e977adeb242921</a>
  <a href="mailto:61\_640x480.jpg">61\_640x480.jpg</a> изображение выбросов заводов
- <a href="http://www.day.kiev.ua/sites/default/files/main/openpublis-h\_article/20070924/4161-6-1.jpg">h\_article/20070924/4161-6-1.jpg</a> изображение автомобильных выхлопов
- <a href="http://www.scout-td.ru/upload/catalog/00000119544.jpg">http://www.scout-td.ru/upload/catalog/00000119544.jpg</a> фото шарика
- <a href="http://school.xvatit.com/images/2/26/A1.37.jpg">http://school.xvatit.com/images/2/26/A1.37.jpg</a> изображение ускорения свободного падения
- <a href="http://k26.kn3.net/35A919018.gif">http://k26.kn3.net/35A919018.gif</a> изображение бросания шарика

\_\_\_\_\_\_\_//demiart.ru/forum/uploads2/post-113652-122880447\_ <u>B.gif</u> - изображение движения