Файловые системы

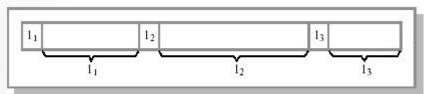
Файловая система

• Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы организовать эффективную работу с данными, хранящимися во внешней памяти, и обеспечить пользователю удобный интерфейс при работе с такими данными.

Основные функции файловой системы

- Идентификация файлов. Связывание имени файла с выделенным ему пространством внешней памяти.
- Распределение внешней памяти между файлами.
- Обеспечение надежности и отказоустойчивости.
 Обеспечение защиты от несанкционированного доступа.
- Обеспечение совместного доступа к файлам.
- Обеспечение высокой производительности.

Файл

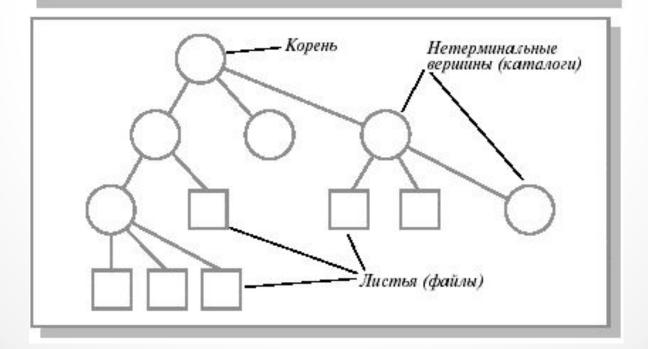

- Файл это поименованный набор связанной информации, записанной во вторичную память.
- С точки зрения пользователя, файл единица внешней памяти.

Общие сведения о файлах

- Имена файлов. Многие ОС поддерживают имена из двух частей (имя+расширение).
- Типы файлов. Регулярные (обычные) файлы и директории (справочники, каталоги). Обычные делятся на бинарные и текстовые.
- Атрибуты файлов.

Организация файлов и доступ к ним

- 1. Последовательный файл
- 2. Файл прямого доступа
- 3. Другие формы организации файлов
 - Последовательности записей фиксированной длины
 - Последовательность записей переменной длины


• ИНДЕКСИРОВАННЫЕ ФАИЛЫ

Операции над файлами

- Создание файла, не содержащего данных.
- Удаление файла.
- Открытие файла.
- Закрытие файла.
- Позиционирование.
- Чтение данных из файла.
- Запись данных в файл с текущей позиции.

Директории

Имя файла (каталога)	Тип файла (обычный или кагалог)		
Anti	K	атрибуты	
Games	K	атрибуты	
Autoexec.bat	0	атрибугы	
mouse.com	0	атрибуты	

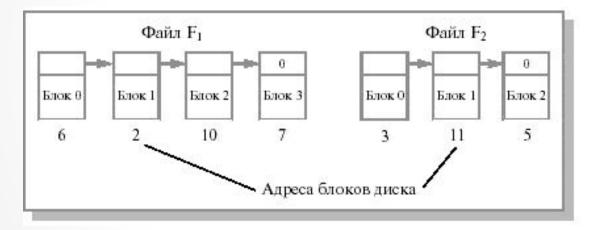
Операции над директориями

- Создание директории.
- Удаление директории.
- Открытие директории для последующего чтения.
- Закрытие директории после ее чтения для освобождения места во внутренних системных таблицах.
- Поиск.
- Получение списка файлов в каталоге.
- Переименование.
- Создание файла.
- Удаление файла.

Защита файлов

- Контроль доступа к файлам
- Списки прав доступа

В ОС Unix все пользователи разделены на три группы.

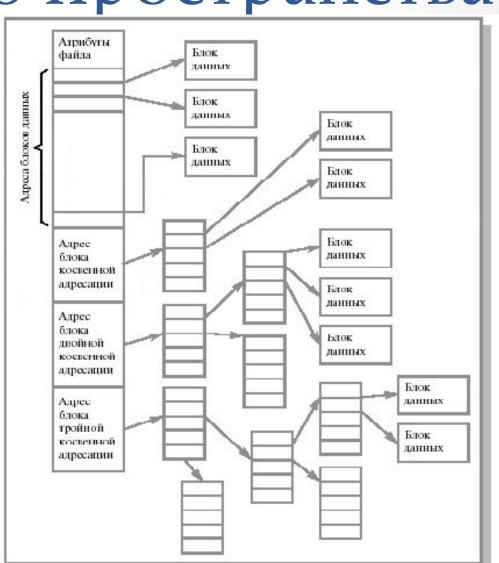

- Владелец (Owner).
- Группа (Group).
- Остальные (Univers).

Общая структура файловой системы

Методы выделения дискового пространства

- Выделение непрерывной последовательностью блоков
- Связный список

Методы выделения дискового пространства


• Таблица отображения файлов

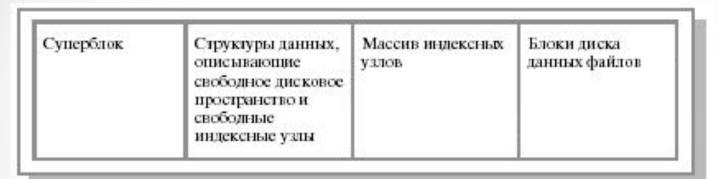
Номера блоков диска		
1		
2	10	
3	11	Начало файла F ₂
4		
5	EOF	
6	2	Начало файла Е
7	EOF	
8		
9		
10	7	
11	5	

Методы выделения

дискового пространства

• Индексные узлы

Управление свободным и занятым


дисковым пространством

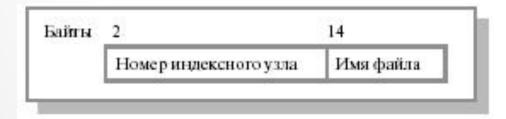
- Учет при помощи организации битового вектора. Часто список свободных блоков диска реализован в виде битового вектора (bit map или bit vector). Каждый блок представлен одним битом, принимающим значение 0 или 1, в зависимости от того, занят он или свободен.
- Учет при помощи организации связного списка. Другой подход - связать в список все свободные блоки, размещая указатель на первый свободный блок в специально отведенном месте диска, попутно кэшируя в памяти эту информацию.

Размер блока

- Проведенные исследования показали, что большинство файлов имеют небольшой размер. Например, в Unix приблизительно 85% файлов имеют размер менее 8 Кбайт и 48% менее 1 Кбайта.
- Важно также учесть, что в системах с виртуальной памятью желательно, чтобы единицей пересылки диск-память была страница (наиболее распространенный размер страниц памяти 4 Кбайта). Отсюда обычный компромиссный выбор блока размером 512 байт, 1 Кбайт, 2 Кбайт, 4 Кбайт.

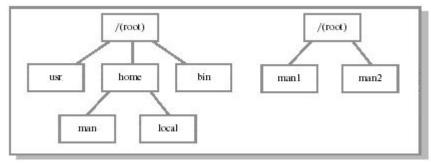
Структура файловой системы на диске

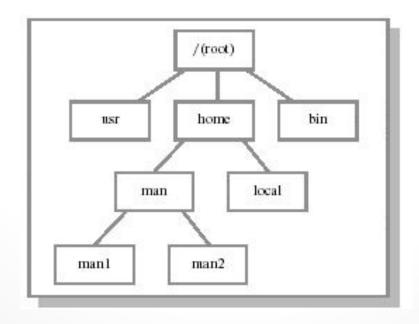
Суперблок содержит общее описание файловой системы, например:


- тип файловой системы;
- размер файловой системы в блоках;
- размер массива индексных узлов;
- размер логического блока.

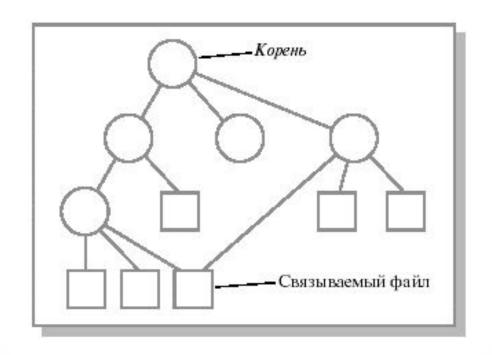
Реализация директорий

• Директории в ОС MS-DOS


• Директории в ОС Unix



Поиск в директории

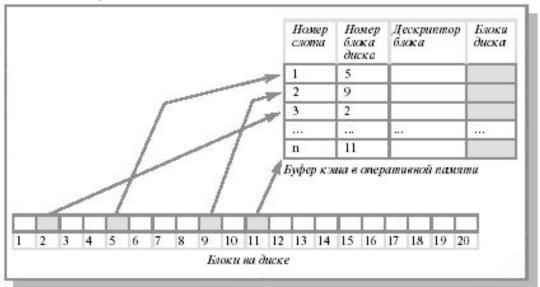

- Линейный поиск.
 На фоне относительно медленного доступа к диску некоторые задержки, возникающие в процессе сканирования списка, несущественны.
- Хеш-таблица. В результате хеширования могут возникать коллизии.
- Другие методы поиска (B-tree и т.д.).

Монтирование файловых систем

Связывание файлов

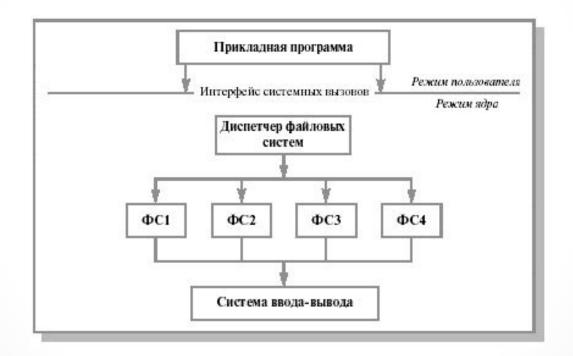
Кооперация процессов при работе с файлами

Разделяемый файл - разделяемый ресурс. Как и в случае любого совместно используемого ресурса, процессы должны синхронизировать доступ к совместно используемым файлам, каталогам, чтобы избежать тупиковых ситуаций, дискриминации отдельных процессов и снижения производительности системы.


Надежность файловой системы

Целостность файловой системы:

- Порядок выполнения операций.
- Журнализация.
- Проверка целостности файловой системы при помощи утилит.
- Управление "плохими" блоками.


Производительность файловой системы

• Кеширование

• Оппимальное размещение информации на диске

Современные архитектуры файловых систем

