Sensitive elements of devices and sensors

Prepared by: Mussagaliyev N.

Division of sensitive elements

The main characteristics of sensitive elements:

- □ Reliability
- □ Microminiaturization
- Unification
- □ Standardization

Elastic sensitive elements

- □ Springs
- I Membranes
- Bellows
- Manometric tubes
- Thermobimetallic elements
- Impellers

Manometric tubular plate

Bimetallic thermometer element

Bimetallic contact

Impeller

Electrical sensitive elements.

- Parametric
- Generator.

To ensure the operation of parametric elements, a <u>power supply</u> is required.

The generator sensitive element converts the input physical quantity into an EMF. Generator elements <u>do not require a power supply</u> in most cases.

Magnetic and magnetoelectric sensitive elements

Scheme of an annular permanent magnet with an air gap

Magnetoelectric sensitive elements are widely used to convert current I or voltage U into a force of Q or moment M. The most common in the nomenclature of devices are magnetoelectric galvanometers and logometers. The galvanometer (Fig. 12) consists of a fixed magnet NS and a movable frame having a width b.

Comparison with permanent magnets

<u>Advantages of sensitive magnetoelectric</u> <u>elements:</u>

- □ High sensitivity
- □ Accuracy of measurements
- □ Linearity of characteristics

Comparison with permanent magnets

<u>Disadvantages of sensitive magnetoelectric</u> <u>elements:</u>

- □ Complexity of construction
- Unsuitable for direct measurement of alternating current.

Thank you for your attention!