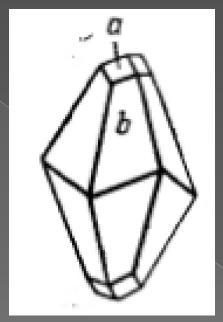
Практическое занятие №5

- 1. Понятие о простых формах
- 2. Номенклатура простых форм высшей категории
 - 3. Простые формы кристаллов высшей категории

Простой формой называется совокупность граней, связанных элементами симметрии.


Грани одной простой формы должны быть <u>одинаковыми</u> по своим физическим и химическим свойствам, а в идеально развитых кристаллах — также по своим очертаниям и величине, так как все они связаны элементами симметрии

Комбинацией называется совокупность двух или нескольких простых форм. Все ее грани целиком не связываются элементами симметрии и, следовательно, могут быть различными по очертаниям, величине и по другим свойствам.

В кубе 1 простая форма (бодинаковых граней в виде квадратов);

в октаэдре тоже 1 простая форма (8 одинаковых граней в виде правильных треугольников)

Пример кристалла, который состоит из комбинации простых форм. В данном кристалле 2 простые формы: грани **a** образуют ромбоэдр; грани **b** образуют тригональный скаленоэдр

При подсчете простых форм в комбинации (на моделях идеальных кристаллов) следует найти число сортов граней, составляющих данный многогранник.

Различные по сорту грани всегда принадлежат различным простым формам. Грани одного сорта в большинстве случаев относятся к одной форме (помимо этого, они должны быть связаны элементами симметрии). Обычно число простых форм в комбинации равно числу сортов граней данной фигуры (во всяком случае не меньше его).

Практическое занятие 5. Номенклатура простых форм высшей категории

```
Моно – один;
\DeltaИ — \DeltaВ\alpha;
тетра – четыре;
пента – пять;
гекса – шесть;
ОКТО - ВОСЕМЬ;
додека – двенадцать;
эдр - грань;
ГОНИА — УГОЛ
```

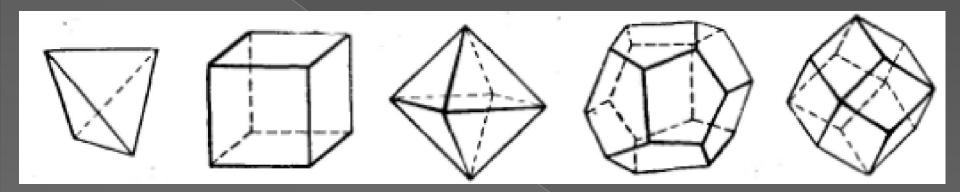
Практическое занятие 5. Номенклатура простых форм высшей категории

Тетраэдр – тетра (4) + эдр (грань) = четырехгранник;

додекаэдр – додека (12) + эдр (грань) = двенадцатигранник;

пентагон – пента (5) + гон (угол) = пятиугольник;

ромбододекаэдр – ромбо (в виде ромба) + додека (12) + эдр (грань) = двенадцатигранник, каждая грань которого в виде ромба


В кристаллах кубической сингонии выделяют **15** простых форм.

В основу номенклатуры простых форм кубической сингонии положены:

- число граней;
- несколько форм, из которых путем их усложнения получаются остальные

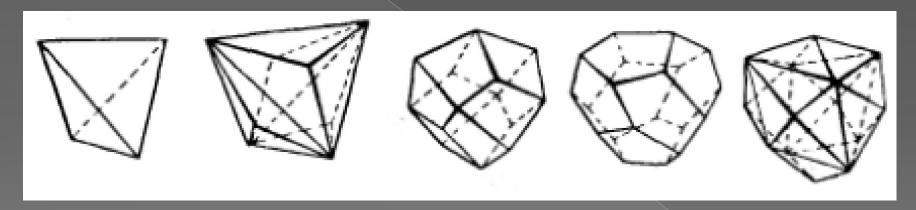
К таким исходным (простейшим) формам относятся:

- 1) <u>тетраэдр</u> (кубический) 4 грани в виде правильных треугольников;
 - 2) **гексаэдр** 6 граней в форме квадратов;
- 3) **октаэдр** 8 граней в виде правильных треугольников;
- 4) **пентагон-додекаэдр** 12 граней в форме пятиугольников;
- 5) **ромбододекаэдр** 12 граней в виде ромбов.

На рисунке представлены:

- 1) тетраэдр;
- 2) гексаэдр;
- 3) октаэдр;
- 4) пентагон-додекаэдр;
- 5) ромбододекаэдр

Начнем с производных тетраэдра. Утроив его грани, получим двенадцатигранник — тритетраэдр.

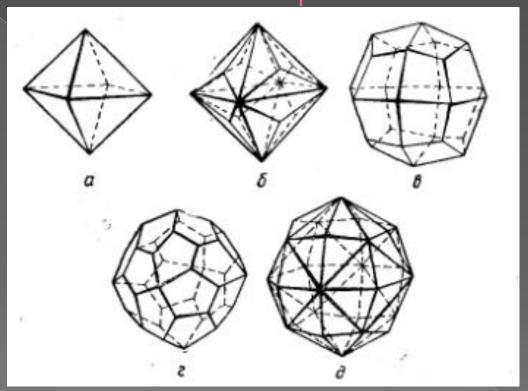

Полученный многогранник может быть с треугольными (тригон-тритетраэдр), четырехугольными (тетрагон-тритетраэдр) и пятиугольными гранями (пентагон-тритетраэдр).

Тригон-тритетраэдр — тригон (треугольник) + тритетраэдр (3*4=12 граней) = 12 граней в виде треугольников;

тетрагон-тритетраэдр – тетрагон (четырехугольник) + тритетраэдр (3*4=12 граней) = 12 граней в виде четырехугольников;

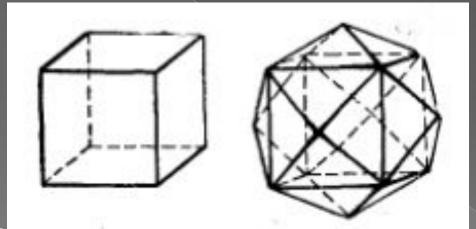
пентагон-тритетраэдр — пентагон (пятиугольник) + тритетраэдр (3*4=12 граней) = 12 граней в виде пятиугольников;

Сюда же принадлежит ушестеренный тетраэдр — **гексатетраэдр** (24 грани в форме треугольников).

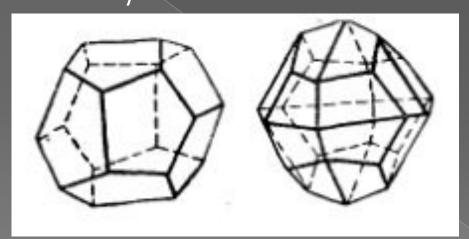

На рисунке представлены <u>тетраэдр</u> и его производные: <u>тригон-тритетраэдр</u>, <u>тетрагон-тритетраэдр</u>, <u>пентагон-тритетраэдр</u> и <u>гексатетраэдр</u>

Октаэдр дает новую серию производных, аналогичную тетраэдрической.

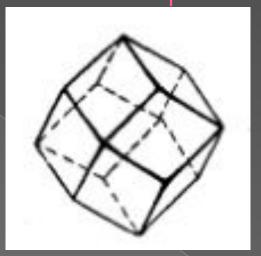
Утраивая грани октаэдра, получаем три двадцатичетырехгранника: тригон-триоктаэдр (24)грани виде треугольников), (24) тетрагон-триоктаэдр грани В виде четырехугольников), (24)пентагон-триоктаэдр грани ВИДЕ


Ушестерив октаэдрические грани, приходим к единственному сорокавосьмиграннику — **гексоктаэдру** (48 граней в виде треугольников).

ПЯТИУГОЛЬНИКОВ).

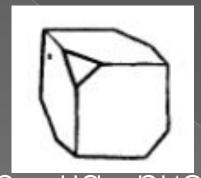

На рисунке представлены <u>октаэдр</u> (а) и его производные: <u>тригон-триоктаэдр</u> (б), <u>тетрагон-триоктаэдр</u> (в), <u>пентагон-триоктаэдр</u> (г) и <u>гексоктаэдр</u> (д)

С гексаэдром (кубом) связана простая форма, представляющая собой тетрагексаэдр (24 грани в виде треугольников).



На рисунке представлен куо то граней в виде квадратов) и его производная форма тетрагексаэдр (24 грани в виде треугольников)

Из пентагон-додекаэдра путем удвоения его граней получаем производную форму – **дидодекаэдр** (24 грани в виде четырехугольников).



На рисунке представлен пентагон-додекаэдр (12 граней в виде пятиугольников) и его производная форма дидодекаэдр (24 грани в виде четырехугольников).

Ромбододекаэдр (12 граней в виде ромбов) представляет собой самостоятельную простую форму, которую нельзя получить из других простых форм. Из ромбододекаэдра никакую простую форму вывести также нельзя

В комбинациях очертания граней простых форм нередко являются искаженными за счет граней других форм.

Так, например, на рисунке изображена комбинация гексаэдра с тетраэдром, причем квадратные грани куба, будучи срезанными тетраэдрическими плоскостями, принимают форму шестиугольников.

Raiolopin					
Категория	Сингония	Вид симметрии	Формула	Установка	Простые формы
Высш	Кубическая	Примитивный	$4\mathrm{L}_33\mathrm{L}_2$	X, Y, Z – три оси L ₄ (при их отсутствии три оси L ₂)	Гексаэдр, ромбододекаэдр, тетраэдр, тригон-тритетраэдр, тетрагон-тритетраэдр, <u>пентагон-тритетраэдр,</u> пентагон-додекаэдр
		Центральный	4L ₃ 3L ₂ 3PC		Гексаздр, ромбододеказдр, октаздр, тригон-триоктаздр, тетрагон-триоктаздр, пентагон-додеказдр, <u>дидодеказдр</u>
		Планальный	4L ₃ 3L ₂ 6P		Гексаэдр, ромбододекаэдр, тетраэдр, тригон-тритетраэдр, тетрагон-тритетраэдр, гексатетраэдр, тетрагексаэдр
		Аксиальный	$3L_44L_36L_2$		Гексаэдр, ромбододекаэдр, октаэдр, тригон-триоктаэдр, тетрагон-триоктаэдр, пентагон-триоктаэдр,
		Планаксиальн ый	3L ₄ 4L ₃ 6L ₂ 9PC		Гексаздр, ромбододеказдр, октаздр, тригон-триоктаздр, тетрагон-триоктаздр, гексоктаздр. тетрагексаздр