
 Python’s dynamic typing model
+

a quiz as a reminder

Types are determined automatically at runtime,
not in response to declarations in your code

Variable creation: A variable (i.e., name), like a, is created
when your code first assigns it a value. Future assignments
change the value of the already created name. Technically,
Python detects some names before your code runs, but you
can think of it as though initial assignments make variables.
Variable types: A variable never has any type information or
constraints associated with it. The notion of type lives with
objects, not names. Variables are generic in nature; they
always simply refer to a particular object at a particular point
in time.
Variable use: When a variable appears in an expression, it is
immediately replaced with the object that it currently refers
to, whatever that may be. All variables must be explicitly
assigned before they can be used; referencing unassigned
variables results in errors.

a = 3

• Create an object to represent the value 3.

• Create the variable a, if it does not yet exist.

• Link the variable a to the new object 3.

What is what?

• Variables are entries in a system table, with
spaces for links to objects.

• Objects are pieces of allocated memory, with
enough space to represent the values for
which they stand.

• References are automatically followed
pointers from variables to objects.

(Python internally caches and reuses certain kinds of
unchangeable objects)

Types Live with Objects, Not Variables

• Objects have more structure than just enough
space to represent their values.

• Each object also has two standard header
fields:

 a type designator used to mark the type of
the object (for example, int, str, etc.);

 a reference counter used to determine when
it’s OK to reclaim the object.

How does it work?

>>> a = 3
>>> a = 'spam'
>>> a = 1.23

Reminder: each object contains a header field that tags the
object with its type. The integer object 3 contains the value
3, plus a designator - a pointer to an object called int. The
type designator of the 'spam' string object points to the
string type (called str). Because objects know their types,
variables don’t have to.

Objects Are Garbage-Collected

>>> a = 3
>>> a = 'spam‘
What happens to object 3?

Each time a is assigned to a new object, Python
reclaims the prior object’s space. References to
objects are discarded along the way. As soon as (and
exactly when) a counter that keeps track of the
number of references drops to zero, the object’s
memory space is automatically reclaimed.

Cyclic references

Because references are implemented as
pointers, it’s possible for an object to reference
itself, or reference another object that does.

Try it:

>>> L = [1, 2]

>>> L.append(L)

What happened? Why?

Cyclic references

Old style: [1, 2, [1, 2, [1, 2, [1, 2, and so on

New style: [1, 2, [...]]

Cyclic references

 Assignments in Python always generate references to objects,
not copies of them. You can think of objects as chunks of
memory and of references as implicitly followed pointers.
When you run the first assignment, the name L becomes a
named reference to a two-item list object—a pointer to a
piece of memory. Python lists are really arrays of object
references, with an append method that changes the array in
place by tacking on another object reference at the end.
Here, the append call adds a reference to the front of L at the
end of L, which leads to the cycle.

Because the reference counts for such objects never drop to zero,
they must be treated specially (see gc module in Python’s library
manual).

Shared References

>>> a = 3
>>> b = a

names a and b are not linked to each other directly!!!
 there is no way to ever link a variable to another variable in
Python !!!

Shared References
>>> a = 3

>>> b = a

 >>> a = 'spam‘

Shared References

>>> a = 3
>>> b = a
>>> a = a + 2
What happens?

 (the last assignment sets a to a completely different object
-in this case, the integer 5, which is the result of the +
expression. It does not change b as a side effect. In fact,
there is no way to ever overwrite the value of the object
3—as integers are immutable and thus can never be
changed in place.

Shared References and In-Place Changes

>>> L1 = [2, 3, 4]

>>> L2 = L1

>>> L1 = 24

What is the difference?

>>> L1 = [2, 3, 4]

>>> L2 = L1

>>> L1[0] = 24

Avoiding side effects

Side effect: L1=[24, 3, 4] and L2=[24, 3, 4]

>>> L1 = [2, 3, 4]
 >>> L2 = L1[:] (or list(L1), copy.copy(L1), etc.)
>>> L1[0] = 24
Result:
L1 = [24, 3, 4]
 L2 is not changed [2, 3, 4]
to copy a dictionary or set, use their X.copy() method call or
their type names, dict and set

Making copies

 Standard library copy module has a call for copying
any object type generically, as well as a call for
copying nested object structures—a dictionary with
nested lists, for example:
import copy

X = copy.copy(Y) # Make top-level "shallow" copy of any object Y

 X = copy.deepcopy(Y) # Make deep copy of any object Y: copy all nested parts

Shared References and Equality

>>> L = [1, 2, 3]
>>> M = L # M and L reference the same object
>>> L == M # Same values

True

>>> L is M # Same objects

True

 == operator, tests whether the two referenced objects have the
same values;
 is operator, instead tests for object identity—it returns True only if
both names point to the exact same object, so it is a much stronger
form of equality testing.

Why is so?

>>> L = [1, 2, 3]
>>> M = [1, 2, 3] # M and L reference different objects
>>> L == M
True
>>> L is M # Different objects
False

>>> X = 42
>>> Y = 42 # Should be two different objects
>>> X == Y
True
>>> X is Y # Same object anyhow: caching at work!
 True
 (small integers and strings are cached and reused not literally reclaimed; they will
likely remain in a system table to be reused the next time you generate a them in your
code)

Summary

Dynamic Typing Is Everywhere

Embedded types (reminder)
The basics

"spam" + "eggs"
S = "ham"
"eggs " + S
S * 5
S[:0]
"green %s and %s" % ("eggs", S)
'green {0} and {1}'.format('eggs', S)
('x',)[0]
('x', 'y')[1]
L = [1,2,3] + [4,5,6]
L, L[:], L[:0], L[−2], L[−2:]
([1,2,3] + [4,5,6])[2:4]
[L[2], L[3]]

L.reverse(); L
L.sort(); L
L.index(4)
{'a':1, 'b':2}['b']
D = {'x':1, 'y':2, 'z':3}
D['w'] = 0
D['x'] + D['w']
D[(1,2,3)] = 4
list(D.keys()), list(D.values()), (1,2,3) in D
[[]], ["",[],(),{},None]

Embedded types (reminder)
 Indexing and slicing

 L=[0,1,2,3]
a. What happens when you try to index out of

bounds (e.g., L[4])?
b. b. What about slicing out of bounds (e.g.,

L[−1000:100])?
c. Finally, how does Python handle it if you try

to extract a sequence in reverse, with the
lower bound greater than the higher bound
(e.g., L[3:1])? Try L[3:1:-1].

 Hint: try assigning to this slice (L[3:1]=['?']), and see where the value is put.
Do you think this may be the same phenomenon you saw when slicing out of
bounds?

Embedded types (reminder)
Indexing, slicing, and del

Define some list L with four items, and assign an empty
list to one of its offsets (e.g., L[2]=[]). What happens?
Then, assign an empty list to a slice (L[2:3]=[]). What
happens now?
Recall that slice assignment deletes the slice and inserts
the new value where it used to be.
The del statement deletes offsets, keys, attributes, and
names. Use it on your list to delete an item (e.g., del
L[0]). What happens if you delete an entire slice (del
L[1:])? What happens when you assign a nonsequence to
a slice (L[1:2]=1)?

Embedded types (reminder)
Tuple assignment

>>> X = 'spam'
>>> Y = 'eggs'
>>> X, Y = Y, X
What do you think is happening to X and Y?

The values of X and Y are swapped. When tuples appear on the left and
right of an assignment symbol (=), Python assigns objects on the right to
targets on the left according to their positions. This is probably easiest to
understand by noting that the targets on the left aren’t a real tuple, even
though they look like one; they are simply a set of independent
assignment targets. The items on the right are a tuple, which gets
unpacked during the assignment (the tuple provides the temporary
assignment needed to achieve the swap effect).

Embedded types (reminder)
Dictionary keys

 Consider the following code fragments:
>>> D = {}
>>> D[1] = 'a'
>>> D[2] = 'b'
You’ve learned that dictionaries aren’t accessed by offsets, so what’s
going on here? Does the following shed any light on the subject? (Hint:
strings, integers, and tuples share which type category?)

>>> D[(1, 2, 3)] = 'c'
>>> D
{1: 'a', 2: 'b', (1, 2, 3): 'c'}

Embedded types (reminder)
Dictionary indexing

 Create a dictionary named D with three entries, for
keys 'a', 'b', and 'c'.
What happens if you try to index a nonexistent key
(D['d'])?
What does Python do if you try to assign to a
nonexistent key 'd' (e.g., D['d']='spam')?
How does this compare to out-of-bounds assignments
and references for lists?
Does this sound like the rule for variable names?
Indexing a nonexistent key (D['d']) raises an error; assigning to a nonexistent key (D['d']='spam')
creates a new dictionary entry. On the other hand, out-of-bounds indexing for lists raises an error
too, but so do out-of-bounds assignments. Variable names work like dictionary keys; they must
have already been assigned when referenced, but they are created when first assigned.

Embedded types (reminder)
Generic operations

Run interactive tests to answer the following questions:
a. What happens when you try to use the + operator on

different/mixed types (e.g., string + list, list + tuple)?
b. Does + work when one of the operands is a

dictionary?
c. Does the append method work for both lists and

strings? How about using the keys method on lists?
(Hint: what does append assume about its subject
object?)

d. Finally, what type of object do you get back when you
slice or concatenate two lists or two strings?

Embedded types (reminder)
String indexing

 Define a string S of four characters: S = "spam".
Then type the following expression:
S[0][0][0][0][0]. Any clue as to what’s happening
this time? (Hint: recall that a string is a collection
of characters, but Python characters are
one-character strings.) Does this indexing
expression still work if you apply it to a list such
as ['s', 'p', 'a', 'm']? Why?
Every time you index a string, you get back a string that can be indexed again. This
generally doesn’t work for lists (lists can hold arbitrary objects) unless the list contains
strings.

Embedded types (reminder)
Immutable types

Define a string S of four characters again: S =
"spam". Write an assignment that changes the
string to "slam", using only slicing and
concatenation. Could you perform the same
operation using just indexing and
concatenation? How about index assignment?

Embedded types (reminder)
Nesting

Write a data structure that represents your
personal information: name (first, middle, last),
age, job, address, email address, and phone
number. You may build the data structure with
any combination of built-in object types you like
(lists, tuples, dictionaries, strings, numbers).
Then, access the individual components of your
data structures by indexing. Do some structures
make more sense than others for this object?

Embedded types (reminder)
 Files

Write a script that creates a new output file
called myfile.txt and writes the string "Hello file
world!" into it.

Then write another script that opens myfile.txt
and reads and prints its contents.

Problems to solve

• The game “Find words”. One should find words which
are present on the game field of symbols.

• There given a set of cities’ names. One should find all
the sequences that meet the rules of the well known
game.

• There given the data of students’ exams results in the
form of the sheets on each subject. Each sheet has the
list of students with their scores in this very subject.
One should get the list of failed students in the
following form: the name of the student and the list of
subjects he\she failed (score less than 50).

