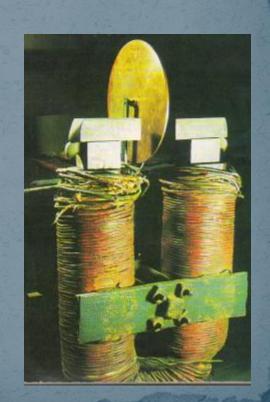
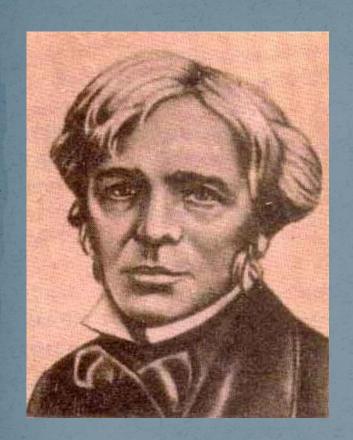
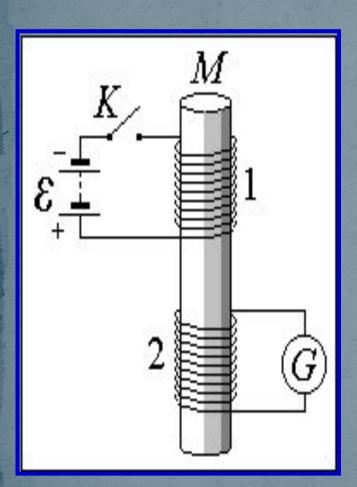

Магнитный поток. Магнитная индукция. Закон электромагнитной индукции. Правило Ленца.


«Счастливая случайность выпадает лишь на одну долю подготовленного ума».
Л.Пастернак


Открытие электромагнитной индукции

«Самым великим моим открытием было открытие Фарадея»

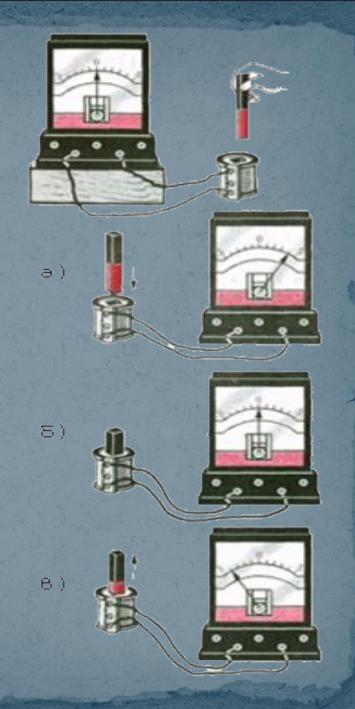
Гэмфри Дэви


Майкл Фарадей

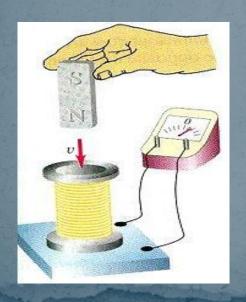
1791 – 1867 г.г., английский физик, Почетный член Петербургской Академии Наук (1830), Основоположник учения об электромагнитном поле; ввел понятия «электрическое» и «магнитное поле»; высказал идею существования электромагнитных волн.

1821 год: «Превратить магнетизм в электричество». **1931** год — получил электрический ток с помощью магнитного поля

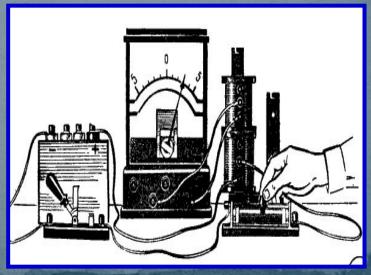
Опыт М. Фарадея.



29 августа 1831


Одна из этих спиралей была соединена с гальванометром, другая - с сильной батареей... При замыкании цепи наблюдалось внезапное, но чрезвычайно слабое действие на гальванометре, и то же самое действие замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удалось обнаружить отклонения стрелки гальванометра...»

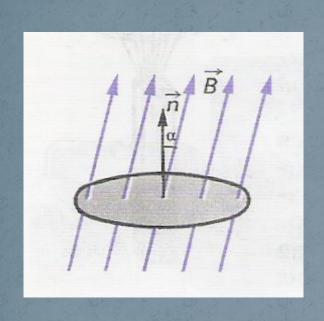
17 октября 1831 года


Электрический ток возникал тогда, когда проводник оказывался в области действия переменного магнитного поля.

Электромагнитная индукция — физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром. Возникающий при этом ток называют индукционным.

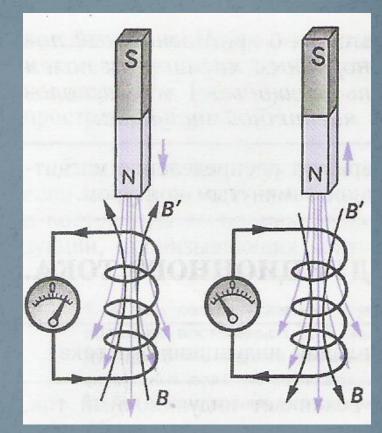
Направление индукционного тока

Правило Ленца


Индукционный ток всегда имеет такое направление, при котором возникает противодействие причинам,

Э.Х. Ленц 1804 – 1865 г.г., академик, ректор Петербургского Университета

Магнитный поток

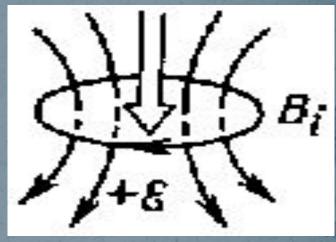


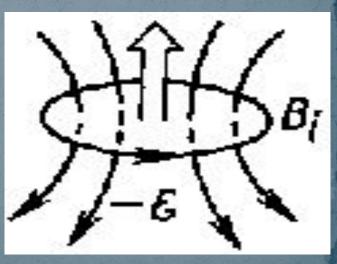
Магнитным потоком Ф через поверхность площадью S называют величину, равную произведения модуля вектора магнитной индукции В на площадь S и косинус угла α между векторами В и п.

Φ=BS cos α Φ=B_n S

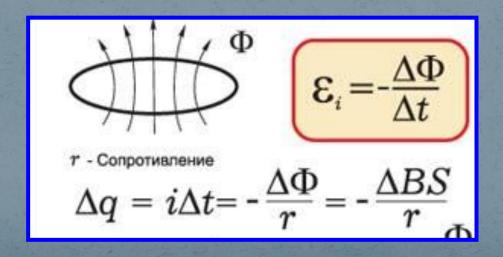
Алгоритм определения направления индукционного тока

- 1. Определить направление линий индукции внешнего поля В(выходят из N и входят в S).
- 2. Определить, увеличивается или уменьшается магнитный поток через контур (если магнит вдвигается в кольцо, то $\Delta\Phi$ >0, если выдвигается, то $\Delta\Phi$ <0).
- 3. Определить направление линий индукции магнитного поля В', созданного индукционным током (если $\Delta\Phi > 0$, то линии В и В' направлены в противоположные стороны; если $\Delta\Phi < 0$, то линии В и В' сонаправлены).
- 4. Пользуясь правилом буравчика (правой руки), определить направление индукционного тока.


∆Ф характеризуется изменением числа линий В, пронизывающих контур.

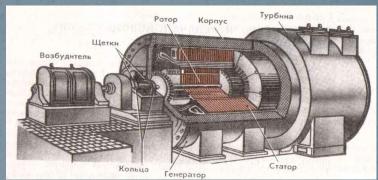

Закон электромагнитной индукции.

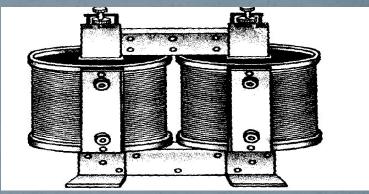
При всяком изменении магнитного потока через проводящий контур в этом контуре возникает электрический ток.

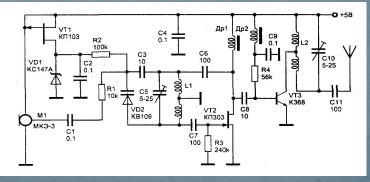

ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Ток в контуре имеет положительное направление при убывании внешнего магнитного потока.

ЭДС электромагнитной индукции в замкнутом контуре численно равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную этим контуром.




ПРИМЕНЕНИЕ


Производство электрической энергии

Преобразование тока

Радиотехника

