Избранные главы фундаментальной химии

Лекция 1

РЕНТГЕНОВСКАЯ ДИФРАКЦИЯ – УНИКАЛЬНЫЙ МЕТОД ИССЛЕДОВАНИЯ МАТЕРИИ Применение рентгеновской дифракции

XRD является неразрушающим методом Некоторые применения X-Ray Diffraction:

- 1. <u>Определение кристалличности или аморфности</u> <u>вещества</u>
- 2. Определение структуры кристаллов
- 3. <u>Определение электронного распределения в</u> кристаллах
- 4. Определение ориентации монокристалла
- 5. Определение текстуры зернистых материалов
- 6. <u>Измерение блоков когерентного</u> <u>рассеяния и микродеформаций</u>

Макс фон Лауэ

Рентгеновские лучи X-RAY _F

Рентген

Брэгги отец и сын

 $2dsin\theta = n\lambda$

Рентгеновская трубка

- θ Glancing angle
- 20 Diffraction angle
- α Aperture angle
 - Diffractometer beam path in 0/20 mode

Порошковая дифрактометрия Фазовый анализ

• Ширина линий – важнейший параметр, получаемый из рентгеновского дифракционного эксперимента. При анализе ширины линий различают инструментальное уширение – величину, определяемую характеристиками дифрактометра, а также физическое уширение, которое обусловлено особенностями рассеяния рентгеновских лучей на испытуемом образце

$\beta(2\theta) = \lambda/(\langle D \rangle \cos(\theta)) + 4\epsilon tg(\theta)$

 Принципиальная возможность разделения эффектов мелкодисперсности (влияния размеров кристаллитов) и микронапряжений основана на различной их зависимости от величины угла дифракции. Поэтому изучение этих эффектов должно проводиться минимум для двух порядков отражения от одной и той же кристаллографической плоскости. Можно использовать системы плоскостей вида: [(111), (222)] и

β(2θ)= λ/(<D> cos(θ)) +4ε tg(θ) • βφиз(2θ)= βэ(2θ) - βи(2θ)

- β_э(2θ) экспериментальная ширина
- Ви(20) инструментальная ширина

• Существенное изменение ширины линий В результате механической обработки указывает на наличие в образцах физического. уширения. К заметному изменению уширения линий может привести достаточно малый размер блоков <D>, а также наличие в образце микродеформаций є (т.е. присутствие внутри частиц областей с вариацией периода решетки). Для изучения физического уширения необходимо исключить инструментальное уширение.

Измерение блоков когерентного рассеяния и микродеформаций

 $\beta(2\theta) = \lambda/(\langle D \rangle \cos(\theta)) + 4\epsilon tg(\theta)$

20, град.

 В настоящее время рентгеновский дифракционный анализ остается самым доступным методом структурного анализа, позволяющим получать детальную информацию о структуре материалов. Рентгеновский анализ образцов, подвергнутых интенсивным механическим воздействиям, проводится сравнением структурных характеристик исходных и механически обработанных образцов. Строя зависимость структурных характеристик (параметров решетки, ширины ЛИНИЙ, микродеформаций, размеров блоков) OT продолжительности механической обработки, температуры отжига и от любых других физических величин, можно получить важную информацию о структурно-химических превращениях в материалах.

• Сопоставляя эту информацию с данными термического, спектрального анализа, С реакционной способности и величинами растворимости, можно решать практически важные проблемы: разрабатывать технологии синтеза новых материалов, переработки Метод минерального сырья и др. механической обработки материалов Β сочетании с рентгеновским анализом дает уникальную возможность исследования природы прочности частиц микронных размеров, имеющих практически идеальную кристаллическую решетку.

Таблица Значения микродеформаций и размеров блоков в зависимости от кратности и продолжителности обработки в центробежной и планетарной мельницах.

СаО ₂ (центробежная мельница)	<\varepsilon^{2>1/2}, %	D ₁₀₁₋₂₀₂ , nm	СаО ₂ (планета рная мельница)	<ε ² > ^{1/2} , %	D ₁₀₁₋₂₀₂ , nm
исходный	0.27 ± 0.03	53 ± 4	исходный	0.27 ± 0.03	53 ± 4
однократная	0.30 ± 0.04	57 ± 6	5min	0.19 ± 0.04	24 ± 3
пятикратная	0.28 ± 0.04	63 ± 4	15min	$\begin{array}{c} 0.24 \pm \\ 0.03 \end{array}$	19 ± 4
шестикратная	0.52 ± 0.04	64 ± 9	45min	0.35 ± 0.02	23 ± 3
семикратная	0.33 ± 0.01	53 ± 8	75min	0.43 ± 0.07	21 ± 2

Уширение линий (111) (а) и (206) (б) кремния в результате механической обработки в планетарной мельнице.

Si ε = 0,08 ÷ 0,10% (300 м/с)

Расчет размеров блоков и микродеформаций проводился по формуле в NaCl

Образец	В ущирение	$\lambda / ($		⁸ унирение	Формула14,n=2			
	T	D,нм	ε,%		D,нм	ε,%		
Отражения (111) и (222)								
исходный	блочно	83 (14)		блочное	70(14)			
	е							
1	блочно	59(12)		блочное	51(10)			
	e							
2	блочно	72(13)		блочное	61(11)			
	e							
3	блочно-	119(46)	0,13(4)	блочно-	94(36)	0,14(4)		
	деформ.			деформ.				
4	деформ.		0,12(3)	деформ.		0,14(3)		
5	блочно-	154(42)	0,07(3)	блочно-	122(33)	0,08(3)		
	деформ.			деформ.				
3, отжиг Т=150С	блочное	125(26)		блочное	103(21)			
3, отжиг Т=200С	блочное	94(12)		блочное	79(10)			
3, отжиг Т=400С	блочное	117(22		блочное	97(17)			
3, отжиг	блочно-	125(32)	0.07(2)	блочно-	111(25)	0.07(2)		

Образец	Уширение	Формула 14 ,n=1		Уширение	Формула14,n=2			
		D,нм	ε,%		D,нм	٤,%		
Отражения (200) и (400)								
исходный	блочное	88(15)		блочное	75(13)			
1	блочное	64(19)		блочное	54(15)			
2	деформ.		0,08(2)	деформ.		0,09(3)		
3	деформ.		0,11(3)	деформ.		0,13(4)		
4	блочное	148(51)		блочное	117(37)			
5	блочное	122(38)		блочное	98(29)			
3, отжиг T=150C	блочно-деформ.	193(42)	0,05(2)	блочно-деформ.	148(41)	0,06 (3)		
3, отжиг T=200С	блочное	189(50)		блочное	146(38)			
3, отжиг Т=400С	деформ.		0,06(2)	деформ.		0,07(2)		
3, отжиг Т=600С	блочно- деформ.	166(35)	0.06(2)	блочно- деформ	128(27)	0.06(2)		
^{3, через стол} имов И.А. Влияние механической обработки на структуру и свойства								
хлорида	натрия. пео	рганические	материалы.	- 2003 1.	59, N≌. 11. – (5. I - 7.		

Значения величин микродеформаций достигнутые в разных измельчительных устройствах.

Данные, полученные обработкой в центробежной мельнице

- 1. NaCl $\epsilon = 0,13 \div 0,14\%$ 3. BaO2 $\epsilon = 0,17 \div 0,21\%$
- 2. KCl $\epsilon = 0,12 \div 0,14\%$ 4. CaO2 $\epsilon = 0,25 \div 0,34\%$
- 5. Si $\epsilon = 0.03 \div 0.05\%$ (250 M/c)
- 6. Si $\epsilon = 0.08 \div 0.10\%$ (300 M/c)
- 7. S $\epsilon = 0,10 \div 0,12\%$

Литературные данные

- NaF ε = 0,12 ÷ 0,14% вибрационная мельница 25 мин
- W ε = 0,23% вибрационная мельница, 60 мин
- Ад ε = 0,47% вибрационная мельница, 60 мин
- Си ε = 0,12÷0,14% интенсивная пластическая деформация
- SiO2 ε = 0.27 ÷ 0.50% планетарная мельница (3 ÷15 мин)

Расшифровка структуры кристалла

Электронная плотность ρ(x,y,z) в кристалле является периодической функцией и потому ее можно разложить в ряд Фурье.

 $\rho(x,y,z) = 1/V \sum F(h,k,l) \exp[2\pi i(hx+ky+lz)]$

