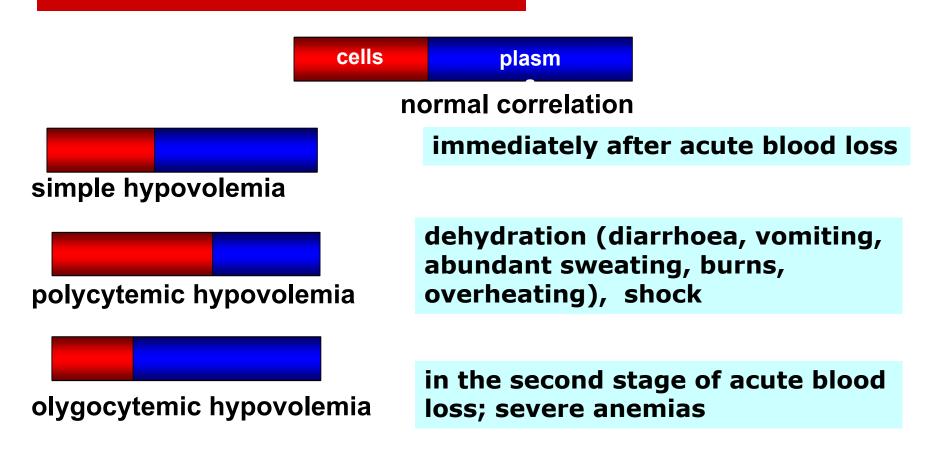
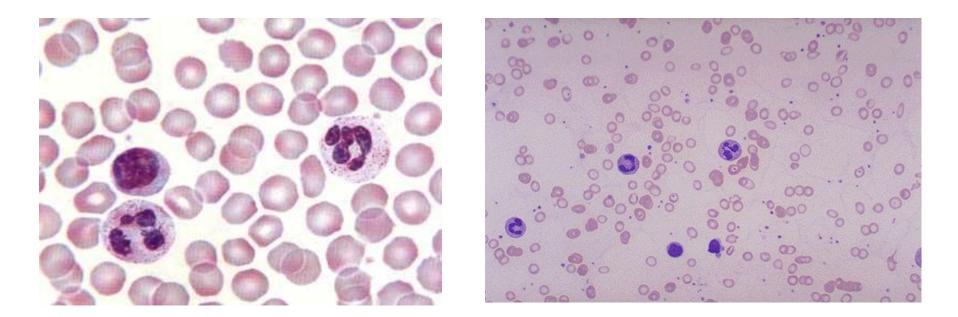

# Red blood cells pathology




## Lecture Plan

- Blood volume changes
- Anemia classifications
- Clinical features and specific signs of anemias
- Erythrocytosis (Polycytemia)

# Hypervolemia




# Hypovolemia



## Anemia

# Anemia is a lack of red blood cells and/or hemoglobin. This results in a hypoxia



## Anemia classifications

#### Pathogenic classification.

- Posthemorrhagic (acute or chronic).
- Haemolytic acute and chronic. Chronic haemolytic anaemias can be inherited and acquired.
- Anemias caused by disturbances of hemopoiesis:
  - deficiency of iron, proteins; vitamin B12, folic acid;
  - hypoplastic and aplastic anaemias;
  - metaplastic anaemia;
  - disregulatory anemia.

## Anemia classifications

#### Classification due to haemoglobin content in RBC.

- Normally haemoglobin content in erythrocyte is 0,8–1,05. This index is named color index (CI).
- **hyperchromic** CI > 1,05 (B12 and pholate-deficiency)
- □ **hypochromic** CI < 0,8 (iron deficiency)
- normochromic CI is normal (inherited haemolytic anaemias)

#### Classification based on the degree of regeneration.

Normally reticulocytes constitute 0.5 to 1.5% of the RBC.

- regenerative normal reticulocytes count (most of anemias)
- **hyporegenerative** reticulocytes <0.5 (chronic posthemorrhagic)
- non-regenerative anemia reticulocytes are absent (bone marrow aplasia)
- hyperregenerative reticulocytes >1,5 (inherited hemolytic anemias)

### Anemia classifications

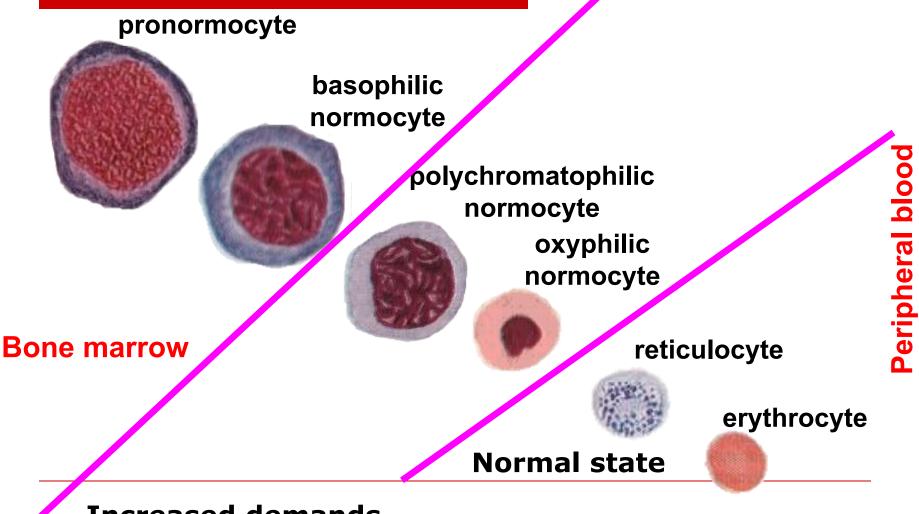
- Classification based on the on the type of RBC maturation.
- erythroblastic anemias
- megaloblastic anemias (B12 vitamin, folic acid deficiency)

#### Classification based on the on the size of RBC.

- The size of RBC refers to **mean corpuscular volume** (MCV).
- microcytic anemia MCV is under 80 (iron deficiency)
- normocytic MCV (80-100) acute posthemorrhagic
- macrocytic MCV is over 100 (B12 vitamin, folic acid deficiency)

## Clinical features of anemia

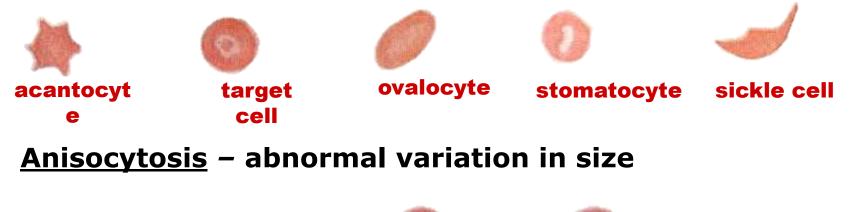
- olygocythemic normovolemia (in most anemias);
- hypovolemia (acute posthemorrhagic anaemia, pernicious anaemia);
- paleness of skin and visible mucous membranes;
- decreased ability to work;
- CNS: the lowering of mental ability to work, the decline of memory, insomnia, fatigueability, dizziness, noise in ears, head aches, attacks of faintness;


## Clinical features of anemia

- Decreased function of endocrine organs (especially thyroid gland);
- GIT: anorexia, flatulence, nausea, constipation and weight loss may also occur.
- Heart and lungs: tachycardia, systolic murmur, dyspnoe in exertion. In eldery people heart failure can develop.

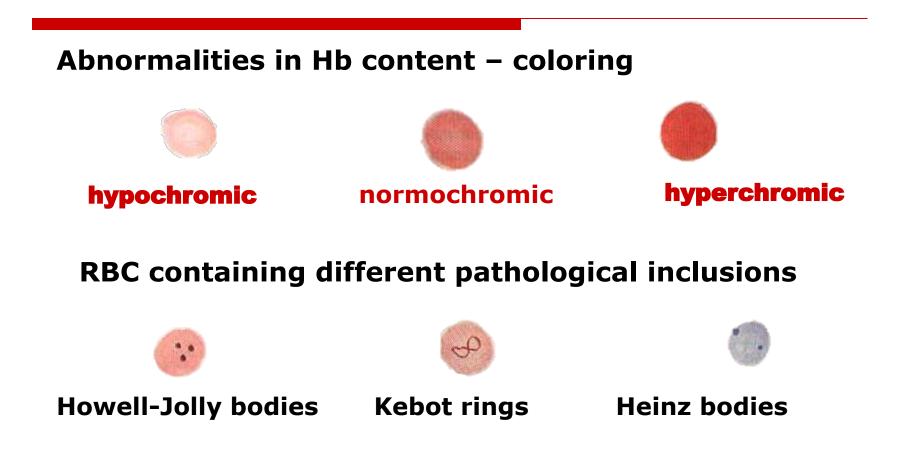
## Specific signs of anemias

- Posthemorrhagic anaemia signs of blood loss from different organs;
- Iron deficiency perversion of taste, trophic disorders of skin, often gastric achylia;
- Chronic anaemia with marked hypoxia -drumstick fingers with spoon-shaped nails;
- Haemolytic anaemia jaundice.


## Regenerative forms of RBC



Increased demands


## Degenerative forms of RBC

#### **<u>Poikilocytosis</u>** – abnormal variation in shape





## Degenerative forms of RBC



### Anemia of blood loss

The main reasons of blood loss:

- blood vessels or heart walls safety loss (incision, rupture, tumor growth, aneurysm)
- increased vessels permeability (radiation sickness, leukemia, sepsis, vitamin C deficiency)
- decreased blood coagulation (coagulation factors deficiency).

### Acute posthemorrhagic anemia

- 1<sup>st</sup> stage heart rate and blood vessel tonus are increased, centralization of bloodflow, normocytic hypovolemia. First hours after blood loss.
- 2<sup>nd</sup> stage (hydremic) increased tissue fluids outflow to blood stream, olygocytemic normovolaemia (or hypovolaemia). 1-5 day after blood loss.
  3<sup>rd</sup> stage activation of erythropoiesis and
  - liver function, high reticulocyte count . 6 10 day after acute blood loss .

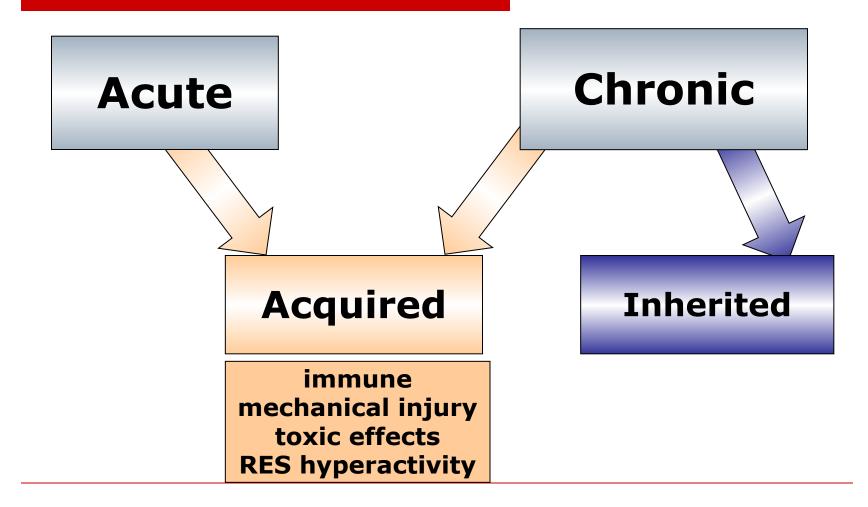
# Principles of blood loss therapy

- Etiologic treatment: the increasing of blood coagulation, the reconstruction of vessel or heart walls.
- Pathogenic treatment: the transfusion of blood, native or synthetic plasma (the normalizing of blood volume), the infusion of proteins and ions.
- Symptomatic therapy: normalization of respiration, heart work, liver and kidneys function.

#### Chronic posthemorrhagic anaemia

- RBC number and Hb content is decreased
- Hypochromic (colour index is 0,6-0,4)
- This anaemia is hyporegenerative.
- Degenerative forms: hypochromic erythrocytes, poikilocytosis, anisocytosis with microcytes
- WBC leukopenia, neutropenia and relative lymphocytosis
- Bone marrow: process of RBCs saturation with haemoglobin is violated, the decrease of erythroblasts maturation

#### Chronic posthemorrhagic anaemia


- Regeneratory stage: Hb, RBC, colour index are lower that normal. Its duration depends on the intensity of blood loss and regenerative ability of the bone marrow.
- Hyporegenerative stage: Hb and RBC lower than in 1<sup>st</sup> stage. Colour index < 0,5. Microcytes prevail. The level of serum iron is low.
- Non-regenerative stage (marrow exhaustion): Reticulocytes are absent.

# Hemolytic Anemias

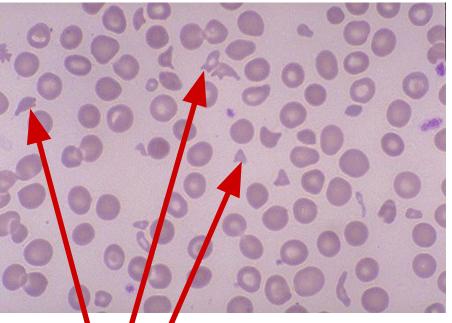
Types of hemolysis

- Extravascular (common) occurs in phagocytic cells of the spleen, liver, and bone marrow.
- Intravascular (rare) RBC undergo lysis in the circulation and release their content into plasma. Hemoglobinemia, hemoglobinuria.

#### Hemolytic Anemias Classification



## Acquired hemolytic anemias


- **Immune abnormalities** due to antibodies production:
- against own undamaged RBC (autoimmune hemolytic anemia);
- against RBC which membrane structure was changed as a result of drugs taking (sulfonamides, penicilline);
- when antibodies are acquired by blood transfusions, pregnancies and hemolytic disease of the newborns (isoimmune haemolytic anemia).

# Acquired hemolytic anemias

Mechanical injury of

**RBC** due to abnormalities of microcirculation.

- during high physical activity – prolonged marchers, joggers. March hemoglobinuria.
- patients with
  prosthetic cardiac
  valves or artificial
  grafts.



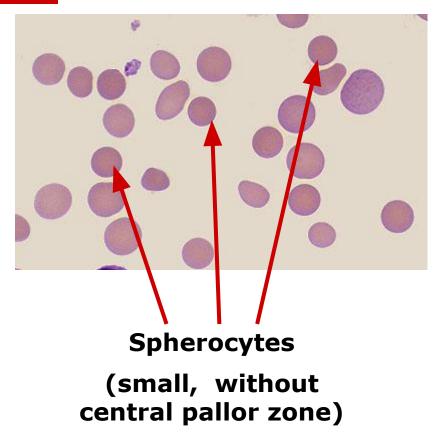
schistocytes

Microangiopathic hemolytic anemia

## Acquired hemolytic anemias

#### **Direct toxic effect**

- Infectious agents toxic effect (a- or β-hemolytic streptococci, meningococci)
- Invasion of infectious agent and destruction of the RBC by the organism (*Plasmodium* malaria).
- Non-infectious agents copper, lead, snakes and spiders venoms, extensive burns.


#### Increased reticuloendothelial activity

Splenomegaly (enlargement of spleen).

# Hereditary hemolytic anemias

#### Pathology of RBC membrane <u>Hereditary spherocytosis</u>

- autosomal dominant disease
- defects in erythrocyte membrane proteins (spectrin, ankyrin) synthesis
- abnormally shaped red cells (which are typically older) are destroyed by the spleen

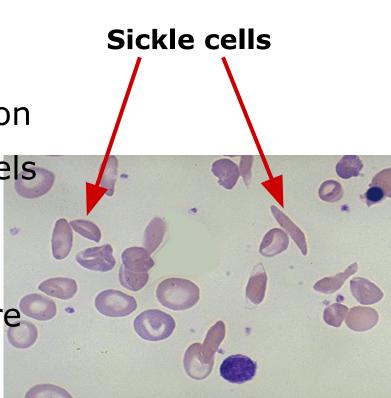


# Hereditary hemolytic anemias

#### Pathology of RBC enzymes <u>Glucose-6-phosphate dehydrogenase deficiency</u>.

- X-linked recessive
- G6PD is necessary for glutathione synthesis, which is an antioxidant, destroying peroxides.
- Oxidative stress is possible in severe infection, some medicines (sulfonamides, primaquine (an antimalarial), glibenclamide) and certain foods.
- Oxidation and precipitation of Hb within RBC (Heinz bodies) occur in G6PD deficiency.
- Favism hemolytic anemia as a result of broad beans consumption

## Hereditary hemolytic anemias

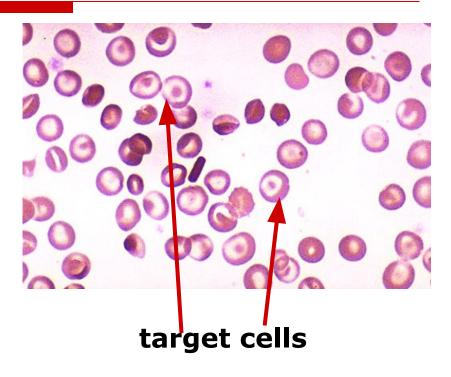

#### Pathology of haemoglobin

- Sickle cell disease is a qualitative disorder of Hb (abnormal Hb is synthesized)
- Thalassemia is a quantitative disorder (abnormal quantity of Hb chains)

Normally RBC contain Hb A which consist of 2 alfa and 2 beta chains (α2β2)

# Sickle cells disease

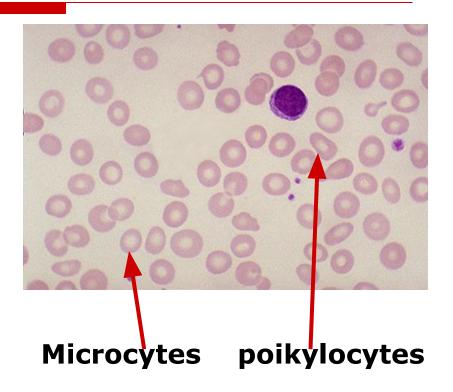
- □substitution of valine for glutamic acid in HbA turns it to HbS
- HbS is polymerized and RBC turn sickle cells in during deoxygenation
- □RBC become stuck in blood vessels
- This causes ischemia and infarction.
- The consequences of infarction are determined by their location.




## Thalassemia classification

- a thalassemia, the production of a globin is deficient
- β thalassemia the production of β globin is defective.
- The heterozygous form manifests as thalassemia minor - asymptomatic or mildly symptomatic.
- The homozygous form thalassemia major – severe hemolytic anemia.
  - Beta thalassemia major is also known as Cooley's Anemia.

# Thalassemia


- deficiency in the production of one globin chains type lead to excess production of other globin chains.
- Excessive globin chains are precipitated within the RBC (target-type RBC).
- Enlargement of liver and spleen, excess of tissue iron stores.



#### Iron deficiency reasons:

- chronic blood losses due to excessive menstruations, other bleedings;
- increased iron requirements (pregnancy, lactation, spurts of growth in infancy, childhood and adolescence);
- inadequate dietary intake;
- insufficient absorption (achlorhydria, partial or total gastrectomy, intestinal malabsorbtion).

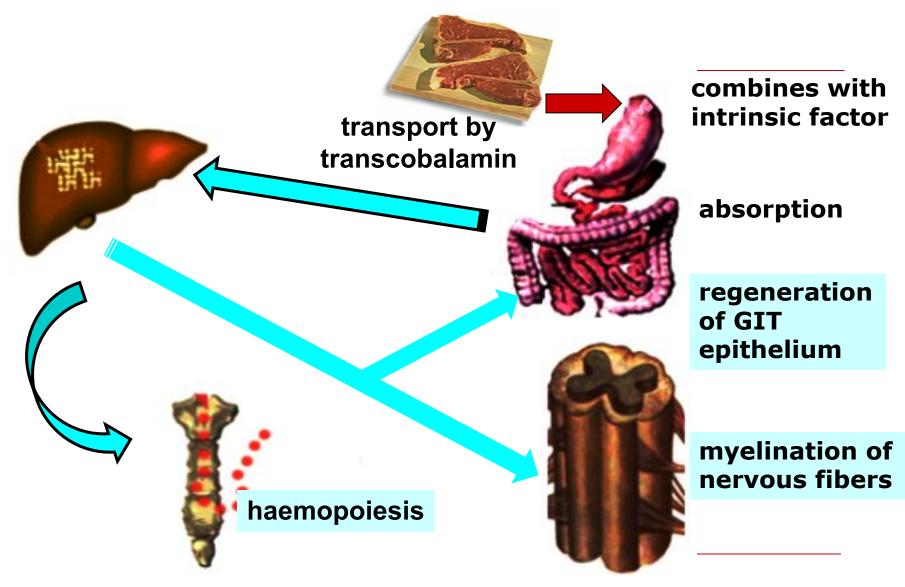
- nails (koilonychia or spoon-shaped nails),
   tongue (atrophic glossitis)
   mouth (angular stomatitis).
- Iow colour index and RBC number.
- Iow blood serum iron
- treatment with iron medicines.



#### Syderoblastic anemia (refractory to iron)

- defect enzymes that include iron to hemoglobin.
  - inherited
  - acquired (lead intoxication).
- Level of plasma iron is high.
- Bone marrow: erythroblasts with increased iron content are observed (syderoblasts).

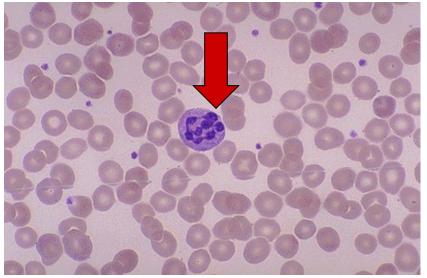
#### Megaloblastic anaemia

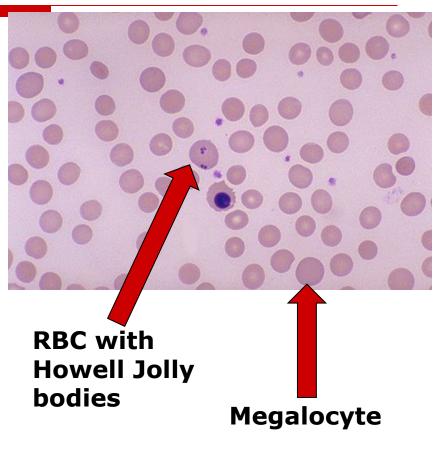

- deficiency of vitamin B12 and folic acid.
- impaired DNA synthesis and abnormalities in haemopoiesis.
- cells synthesize much more RNA than normal and much less DNA.
- megaloblastic type of erythropoiesis
- leucopenia and thrombocytopenia
- megalocytes average life of 40 days.

### Megaloblastic anemia

#### The reasons of **B12 deficiency**:

- inadequate dietary intake (strict vegetarians)
- inadequate production of intrinsic factor (pernicious anemia, congenital lack)
- malabsorption (disorders in absorption)
- The reasons of **folate deficiency**:
- inadequate dietary intake (teenagers, infants, old age, alcoholics)
- malabsorption (coeliac disease, partial gastrectomy)
- excess demand (pregnancy, lactation, infancy, malignant tumors).


#### Vitamin B12 metabolism




### Megaloblastic anemia

#### hyperchromic, macrocytic, hyporegenerative

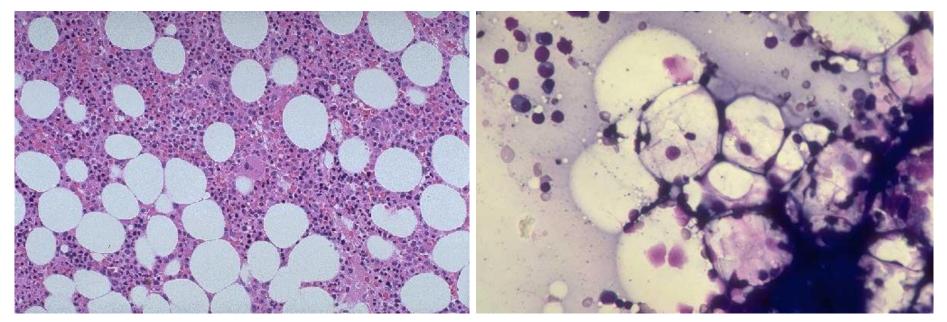
#### hypersegmented neutrophil





### Megaloblastic anemia

Specific clinical features of megaloblastic anemia:

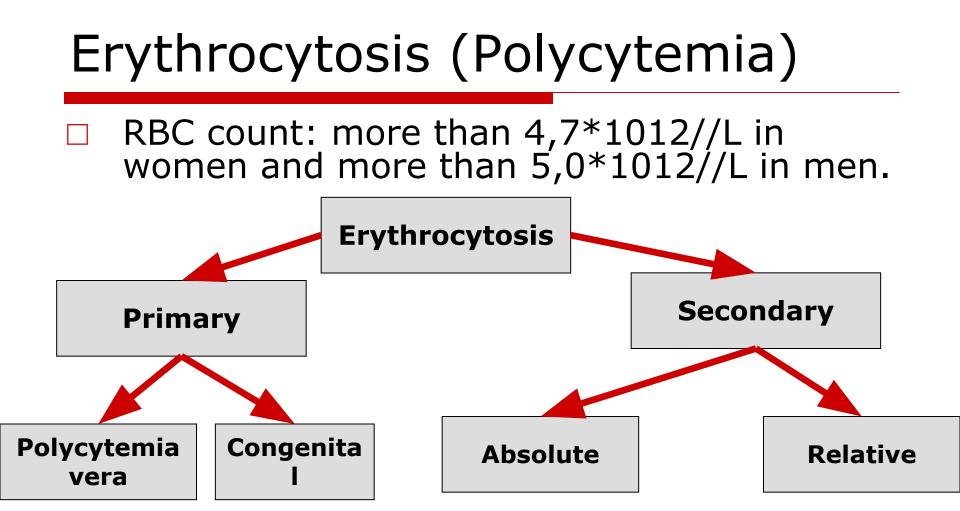

- glossitis (inflammation of the tongue; smooth, beefy, red tongue),
- mild jaundice,
- symptoms of malabsorption,
- weight loss and anorexia.
- neurological signs numbness or tingling of the extremities and an ataxic gait (only B12 deficiency)

**Pernicious anemia** (Addyson anemia) develops due to autoantibodies against intrinsic factor or parietal cells which produce intrinsic factor.

#### Hypoplastic and aplastic anaemias etiology:

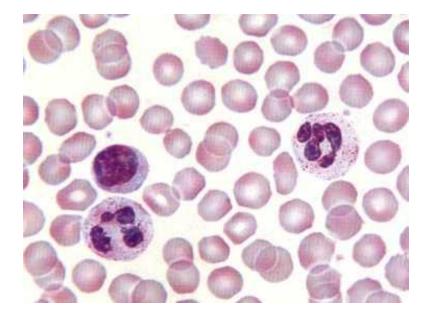
- medicines with myelotoxic effect (amidopyrine, sulfanilamides, cytostatic chemicals, antibiotics);
- autoimmune reactions in bone marrow;
- chemical substances: benzol, petrol, mercury ;
- radiant energy;
- different infections: sepsis, flu.

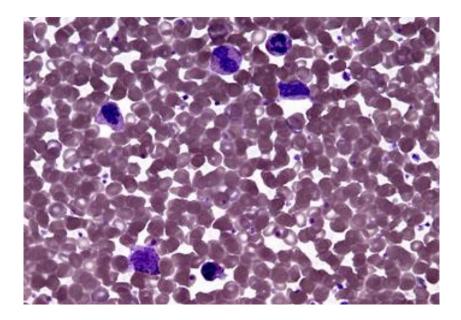
The picture of blood – pancytopenia – decrease of all blood cells. Regenerative forms of blood cells are absent.




normal marrow

aplastic anemia


#### Metaplastic anaemias etiology:


- leukemic metaplasia of bone marrow (it consists of leukemic cells only);
- cancer metastases in bones,
- diffuse osteosclerosis with obliteration of marrow cavity.
- Blood picture is the same as at hypoplastic anaemias.
- **Disregulatory anemia** lack of erythropoietin synthesis (kidney's diseases).



### Vaquez' disease (Polycythemia vera)

#### Tumor induced hyperplasia of bone marrow





Normal blood smear

Polycytemia vera

#### Vaquez' disease (Polycythemia vera)

#### Blood count:

- increased number of RBC, reticulocytes, WBC and platelets.
- Blood volume polycytemic
  hypervolemia, hematocrit is increased
  > 52%.
- Hb content is increased too up to 180-200 g/L. P
- Increase of blood viscosity.

#### Vaquez' disease (Polycythemia vera)

**Clinical signs** 

- arterial hypertension ;
- plethora with congested mucous membranes conjunctiva and retinal veins;
- CNS disturbances (headache, dizziness, visual disturbances, paresthesias, strokelike symptoms)
- cardiovascular symptoms (myocardial ischemia, vessels thrombosis);
- enlargement of spleen and liver;
- frequent bleedings.

#### Secondary absolute erythrocytosis

#### due to increased erythropoietin production General hypoxia:

- Chronic lung diseases;
- Carbon monoxide poisoning;
- Smoker's erythrocytosis;
- The local inhabitants of high-altitude territories.

#### Local renal hypoxia

- renal artery stenosis,
- final stages of renal diseases.

#### Tumors

hepatocellular carcinoma, renal cell cancer

#### Secondary relative erythrocytosis

increased RBC number in the unit of blood volume, meanwhile <u>erythropoiesis is not</u> <u>activated and absolute RBC count is normal</u>.

- organism dehydration (at diarrhoea, vomiting, abundant sweating, burns, overheating)
- blood redistribution from blood depot to peripheral flow (stress reaction, acute hypoxia, high level of catecholamines).
- Clinical signs: increased Hct, polycytemic normovolemia or hypovolemia, increased blood viscosity.