

Липиды

Шлахтер М.Л. Харьков - 2016

Липиды

- Нерастворимые в воде соединения с длинными алифатическими фрагментами
- «Сборная солянка»:
 - о Спирты
 - о Жирные кислоты
 - о Дополнительные соединения
 - Азотистые основания
 - Фосфорная кислота

о Терпены

о Стероиды

Липиды

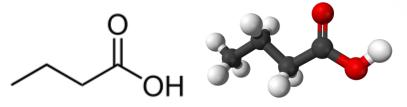
Простые

Сложные

C, H, O, P, S, N

C, H, O

- Жирные кислоты
- Жирные альдегиды
- Жирные спирты
- Триацилглицеролы (жиры)
- Воски
- Длинные алканы


Полярные

- Фосфолипиды
- Гликолипиды
- Фосфогликолипиды
- Сфинголипиды
- Мышьяколипиды

Неполярные

- Моноглицериды
- Диглицериды
- Церамиды
- Эфиры стеринов
- N-ацетилэтаноламиды

Жирные кислоты

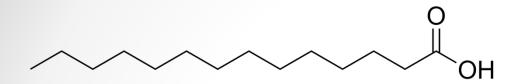
Масляная кислота (C_{4})

Насыщенные

Не содержат двойных и тройных связей

Ненасыщенные

Содержат, как минимум, одну двойную или тройную связь


Мононенасыщенные

Содержат максимум одну двойную или тройную связь

Полиненасыщенные

Содержат минимум две неодинарные связи

Насыщенные жирные кислоты

Миристиновая $CH_3(CH_{2)12}COOH$

Пальмитиновая $CH_3(CH_2)_{14}COOH$

Стеариновая $CH_3(CH_2)_{16}COOH$

Зачем нужны «важные» насыщенные жирные кислоты

Кислота	Где встречается
Миристиновая	Широко встречается в растительных маслах
Пальмитиновая	Очень много в животных жирах, чуть меньше в растительных . Алюминиевая соль пальмитиновой кислоты используется для изготовления напалма
Стеариновая	Очень много в животных жирах, чуть меньше в растительных. Синтезируется живыми организмами из пальмитиновой.

Ненасыщенные жирные кислоты

Леноленовая кислота ($C_{18}H_{30}O_2$)

Зачем нужны «важные»

ненасыщенные жирные кислоты

Кислота	Где встречается
Олеиновая	Широко встречается в растительных маслах
Линолевая	В растительных (чуть меньше – в животных) жирах, незаменима для человека
Линоленовая	В растительных жирах, незаменима для человека
Арахидоновая кислота	Встречается в животных жирах, синтезируется организмом из ленолевой кислоты, оооочень важная

Производные арахидоновой

кислоты - эйкозаноиды

Простагландины

Простациклины

Тромбоксаны

*Л*ейкотриены

Повышают чувствительность ноцицептивных рецепторов (рецепторов боли)

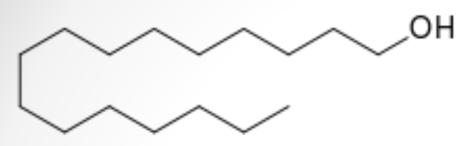
HO ÖH

Простагландин Е

Снижают агрегацию тромбоцитов, усиливают действие гепарина

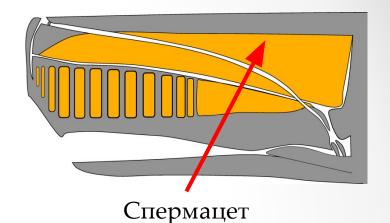
O OH HO

Простациклин


Сужают сосуды, активируют агрегацию тромбоцитов.

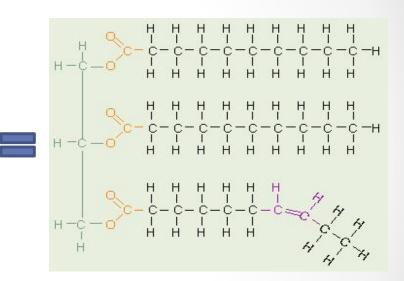
Тромбоксан B_2

Куча важных процессов в иммунитете


 Λ ейкотриен E_4

Жирные спирты

Цетиловый спирт $CH_3(CH_2)_{15}OH$



Используется для косметики, смазок и прочего

Жирные альдегиды – промежуточный этап метаболизма жирных кислот

Жиры (триацилглицеролы)

Жирная Спирт Липид кислота

Глицерин 🕂 3

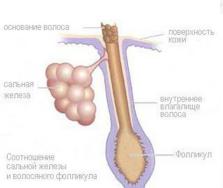
Жирная кислота

Жир (триацилглицерол, $TA\Gamma$

Функции жиров в живых организмах

Функции жиров:

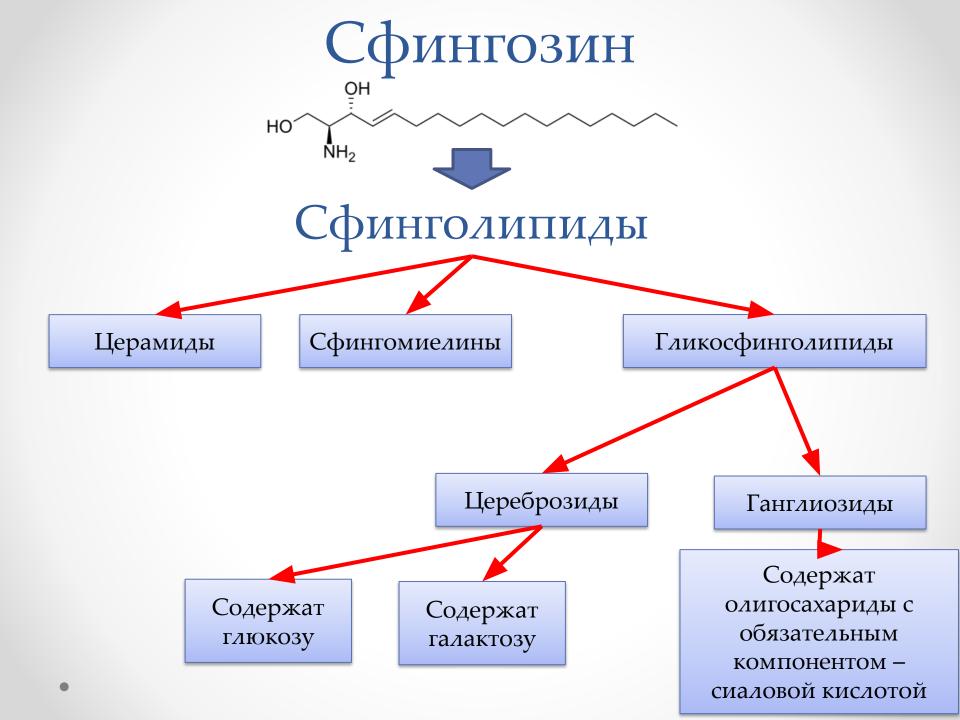
- □ Энергетическая (38,9 кДж/моль)
- □ Структурная
- □ Регуляторная
- □ Термоизоляционная
- □ Защитная
- □ Создание плавучести



Воски

Сложные эфиры высших жирных кислот и высших спиртов. В составе восков нет глицерина.

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH - CH_2 - CH_2 - CH_2 - CH_3 \\ \end{array}$$

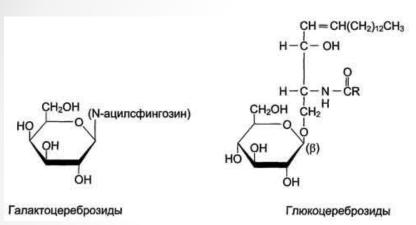

- препятствуют чрезмерному испарению воды
- □ препятствуют попаданию избыточной влаги
- □ защищают от проникновения болезнетворных организмов
- 🛮 строительный материал

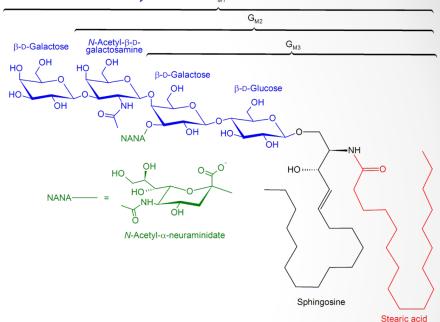
Сальная железа

Ficus elastica

Церамиды и сфингомиелины

Церамиды:

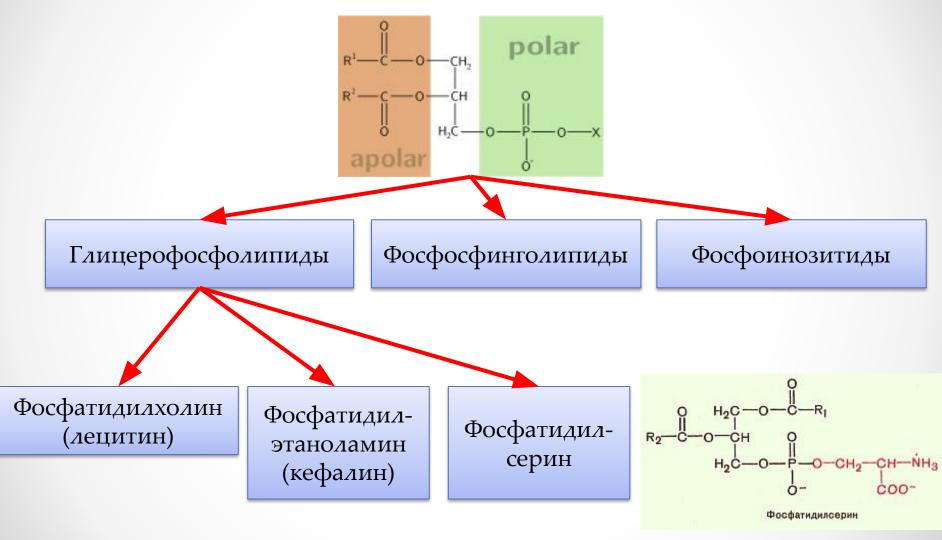

- Входят в состав клеточных мембран
- Предшественники сфингомиелинов
- Могут быть сигнальными молекулами


Сфингомиелины:

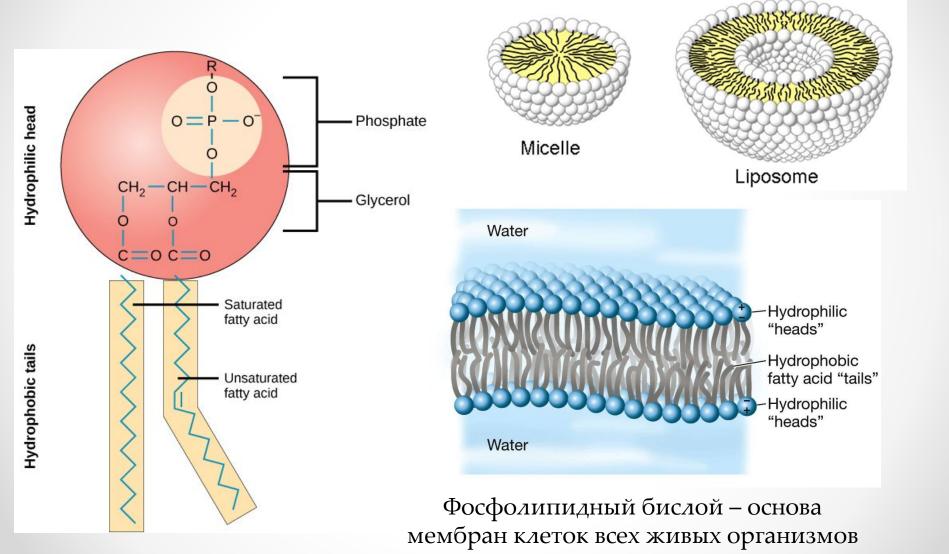
- Входят в состав оболочек аксонов нервных клеток
- Располагается во внешнем слое мембран
- Полярная группа фосфатидилхолин/ фосфатидилэтаноламин

Гликосфинголипиды (цереброзиды

и ганглиозиды)

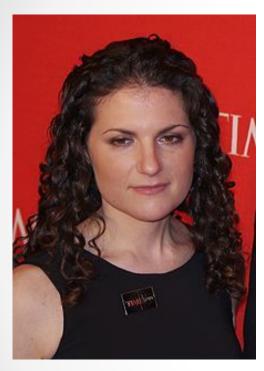

Цереброзиды:

- Галактоцереброзиды преимущественно в мембранах клеток мозга
- Глюкоцереброзиды распространены в мембранах организма


Ганглиозиды

Преимущественно в оболочках нейронов головного мозга

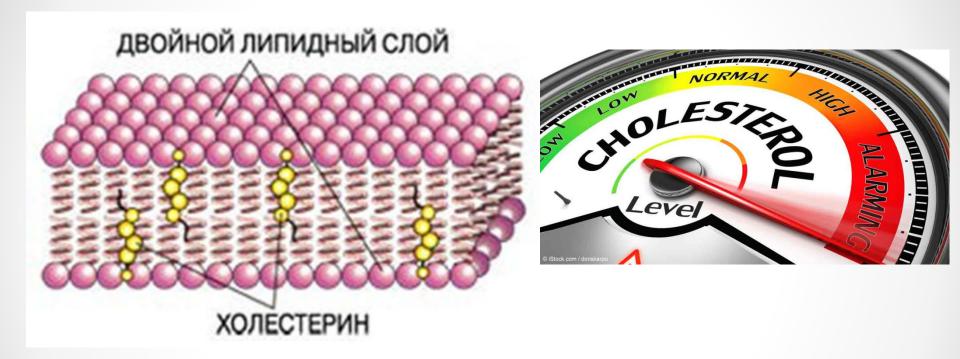
Фосфолипиды



Функции фосфолипидов

Минутка экзотики от

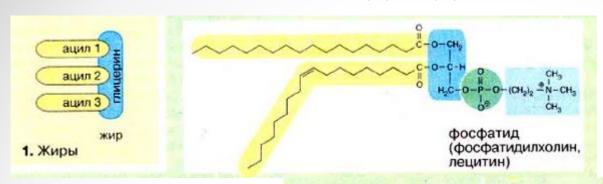
американцев

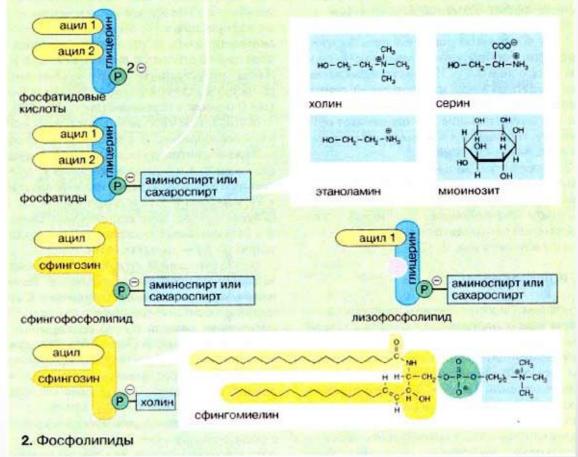


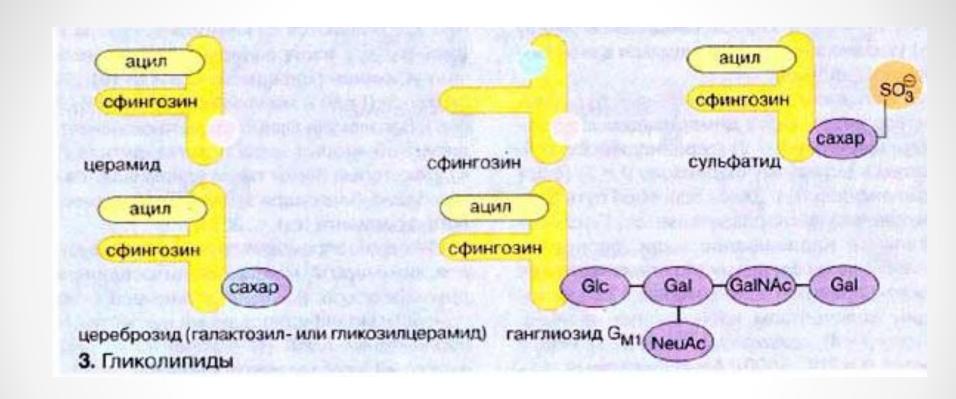
Фелиса Вольф-Саймон

.... Организм на основе мышьяка в виде бактерии, штамма GFAJ-1, которая была открыта 2 декабря 2010 года астробиологом НАСА Фелисой Вольф-Саймон. В природе эти бактерии живут в неблагоприятных условиях окружающей среды вблизи озера Моно в штате Калифорния (США), вода которого отличается высоким содержанием щелочей и солей — в частности, высокой концентрацией солей мышьяка.

Впервые на Земле исследователи обнаружили микроорганизм, способный жить и размножаться, используя токсичный для других форм жизни мышьяк. Во всех клеточных компонентах этой бактерии мышьяк занимает место фосфора в органических молекулах...


Стероиды




Зачем в мембранах холестерин?

- □ Депо
- □ Увеличивает вязкость мембран

Подводя итоги

Спасибо за внимание!

- Липиды важны!
- Фосфолипиды составляют основу биологических мембран, без которых жизнь невозможна
- Жиры, воска, цереброзиды выполняют огромное количество различных функций в организме