Лекция №7 Обсадные колонны. Характеристика обсадных труб. Спуск обсадной колонны.

Часть 1 Обсадные трубы.

ОБСАДНЫЕ ТРУБЫ

Обсадные трубы служат для комплектования обсадных колонн при креплении скважин и разобщении проницаемых горизонтов. Производятся в соответствии с ГОСТ 632-80 и разработанными на его основе техническими условиями. Номенклатура труб, разрешённая к производству ГОСТом и техническими условиями называется сортаментом.

Сортамент разработан на основе следующих характеристик обсадных труб:

- 1. Геометрические параметры
- 2. Тип соединения;
- 3. Материал труб;
- 4. Прочностные характеристи

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ТРУБ

ДИАМЕТР:

Номинальный

(замеряется с точностью до 0,1 мм);

Условный

(замеряется с точностью до 1 мм) ВСЕГО 19 размеров.

1	овик / колонна		ондуктор/ правление						
114,3	168,3	219,1	323,9	406,4					
127,0	177,8	244,5	339,7	426,0					
139,7	193,7	273,1	351,0	473,1					
146,1		298,5	377,0	508,0					

ДЛИНА ТРУБ:

Трубы исполнений A и Б должны изготовляться длиной **от 9,5 до 13 м**; Для треугольной резьбой и трапецеидальной ОТТМ допускаются трубы длиной 8-9,5 м (до 20% труб) и 5-8 м (до 10%);

Для ОТТГ допускаются трубы длиной 8-9,5 м (до 20%) из литой заготовки;

Наибольшая допускаемая кривизна - 1/2000 от длины.

ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ ТРУБ

ТОЛЩИНА СТЕНКИ:

Свой набор толщин для каждого диаметра:

(5,2-15,1 мм для ЭК);

(6,7-16,5 мм для конд/напр)

Для всех диаметров и исполнений отклонения

составляют 12.5%.

Контроль производится шаблоном.

	Условны	Длина	Диаметр
	Й	шаблон	шаблон
	диаметр	a,	а, мм
	трубы,	MM	
	MM		
Я	114 – 219	150	d – 3мм
	245 - 340	300	d – 4мм
	351 – 377	300	d – 5MM
	407 - 508	300	d – 6мм

d – внутренний диаметр

КАТЕГОРИЯ ИСПОЛНЕНИЯ:

«А» - повышенной точности и качества, «Б» - обычное.

Предельные отклонения:

по наружному диаметру - ±0,5-1% (A); ±1-1,25% (Б);

по толщине стенки - -12,5%;

по длине муфт $-\pm 3,0$ мм;

по массе – [-3,5%; +6,5%] (A); [-6,0%; +8,0%] (Б).

ТЕХ.ПРОЦЕСС ПРОИЗВОДСТВА ОБСАДНЫХ ТРУБ

1 Труба-заготовка (входной контроль) 2 Термообработка при необходимости 2.2 Закалка 2.1 Нагрев

2.4 Правка

2.5 Калибрование (при необходимости) 3 Неразрушающий контроль

5 Нарезка и контроль резьбы

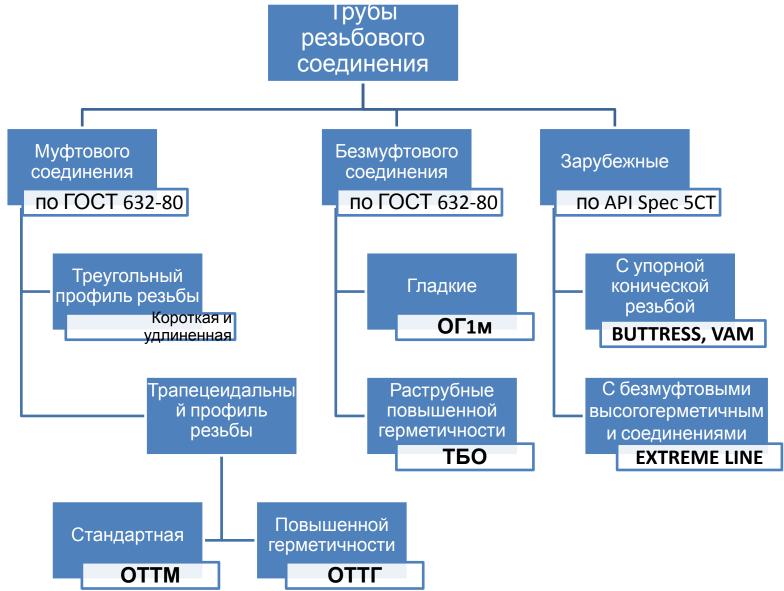
6 Навинчивание муфт

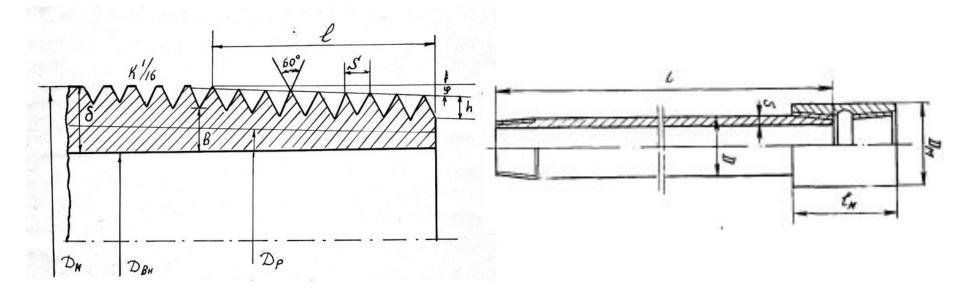
7 Гидравлические испытания

8 Взвешивание, измерение длины, маркировка

11 Упаковка, складирование

9 Навертка предохранительных деталей

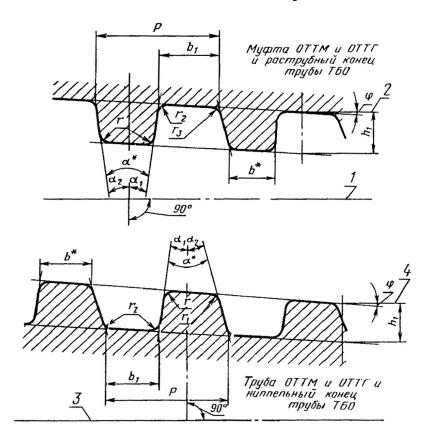

10 Нанесение защитного покрытия (при необходимости маркировка)



Тип соединения определяет тип обсадной трубы.

Также практикуется применение безрезьбовых (сварных) соединений.

Резьба треугольного профиля

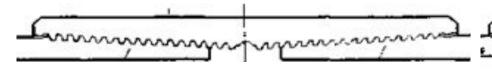


Недостатки резьбы треугольного профиля:

- 1. Прочность муфтового соединения составляет 55-70 % прочности по телу трубы;
- 2. Недостаточно высокая герметичность.

Трубы с такими соединениями целесообразно использовать на небольших глубинах либо в нижних участках обсадных колонн, где прочность на растяжение не является серьезным лимитирующим фактором, а избыточное внутреннее давление сравнительно невелико.

Резьба трапецеидального профиля



Преимущества по сравнению с резьбой треугольного профиля:

Прочность и герметичность трапецеидальной резьбы с малыми углами наклона боковых граней существенно выше;

Выдерживает большую нагрузку на растяжение и сжатие в резьбовом соединении.

Резьба трапецеидального профиля

Конструкция концов ОТТМ

Конструктивной особенностью обсадных труб **с профилем ОТТМ** является высокая сопротивляемость резьбового соединения растягивающим нагрузкам (на 25÷50% выше, чем у соединений с треугольным профилем).

Профиль резьбы ОТТМ имеет вид неравнобедренной трапеции, что обеспечивает легкую посадку трубы в муфту и уменьшает заедание резьбы.

Герметичность обеспечивается давлением резьбоуплотнительной смазки в конструкционных зазорах профиля. Допускается изготовление резьбового соединения с фторопластовым уплотнительным кольцом в муфте для дополнительной герметичности.

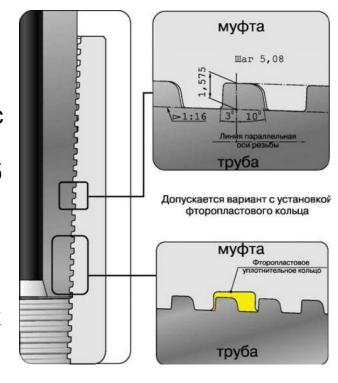
Конструкция концов ОТТГ: а – резьбовое соединение; б – уплотнительная часть соединения

Обсадные трубы **с профилем ОТТГ** снабжены резьбой такого же профиля, что и трубы ОТТМ, но с некоторыми отличиями:

- наличием уплотнительных конических поверхностей – наружной у ниппельного конца трубы и внутренней в серединной части муфты;
- резьбовое соединение закрепляется до упора торца трубы в срединный выступ муфты.

При таком закреплении создается посадка по уплотнительным коническим поверхностям, устраняется зазор между соединяемыми деталями, чем достигается более высокая герметичность (при давлении газа до 50 МПа).

Резьба трапецеидального профиля

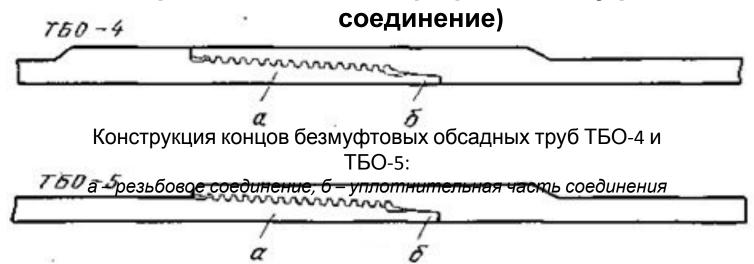

Соединение BUTTRESS комбинирует в себе функции «ходового винта» и гидравлического уплотнения соединения, что обеспечивает хорошую надёжность соединения по сравнению с аналогами.

Конструктивной особенностью обсадных труб с резьбой BUTTRESS является высокая сопротивляемость резьбового соединения растягивающим нагрузкам. Герметичность обеспечивается давлением резьбоуплотнительной смазки в конструкционных зазорах профиля.

Допускается

оединения с

ольцом в м


изготовление резьбового

ФТ**ОООЕДИНЕНИЯНО ТУГМІ ОТВИТФЯЕ595 У**ОВМЕСТИМЫ, но:

- ЗАПРЕЩАЕТСЯ соединение ниппель OTTM муфта BUTTRESS!
- РАЗРЕШАЕТСЯ соединение ниппель BUTTRESS муфта
 ОТТМ

11

ТИПЫ СОЕДИНЕНИЙ Резьба трапецеидального профиля (безмуфтовое

Безмуфтовые обсадные трубы **ТБО** с утолщенными концами имеют две конструкции:

- У трубы **ТБО-4** утолщены оба конца; на одном из концов нарезана наружная, а на другом внутренняя коническая трапецеидальная резьба.
- В трубах **ТБО-5** утолщен только один конец, на котором нарезана внутренняя резьба; на другом, неутолщенном конце имеется наружная резьба.

Профиль и размеры резьб на трубах ТБО аналогичны трубам ОТТМ и ОТТГ, причем трубы ТБО и ОТТГ совместимы друг с другом.

Помимо высокой прочности соединений обсадные трубы ТБО под воздействием осевых нагрузок обеспечивают герметичность при давлении газа до 50 МПа.

12

ТИПЫ СОЕДИНЕНИЙ Резьба трапецеидального профиля (безмуфтовое соединение)

Безмуфтовые трубы ОГ1м с постоянной по длине толщиной стенок снабжены на одном конце (ниппель) наружной, а на другом (раструб) - внутренней конической резьбой.

Для увеличения жесткости муфтового конца предусмотрена посадка по срезанным вершинам профиля от начала сбега резьбы на ниппельном конце трубы до упорного торца.

Герметичность обеспечивается давлением резьбоуплотнительной смазки в конструкционных зазорах профиля.

Так как резьбовое соединение ОГ1м нарезается в теле трубы без высадки концов, трубы имеют гладкопроходный внутренний и наружный диаметры.

Трубы ОГ1м предназначены для хвостовиков, но также могут быть использованы для промежуточных и эксплуатационных колонн.

СОЕДИНЕНИЙ ТРУБ

Для снижения проницаемости контакта элементов резьбовых соединений в практике применяют различные заполнители конструкционных и технологических зазоров – *резьбовые смазки*. Резьбовые смазки кроме заполнения зазоров должны предупреждать задиры и заедания резьбовых соединений труб, поэтому к ним предъявляются следующие требования:

- хорошая смазывающая (покрывающая) способность;
- постоянство свойств смазки с течением времени и при изменении температуры в определенных пределах;
- определенная консистенция, чтобы давление жидкости или газа не смогли выдавить смазку из зазоров резьбы;
- предупреждение заеданий при свинчивании резьбовых соединений;
- защита от коррозии.

Смазку необходимо наносить по всей окружности резьбы. Всякого рода добавки для разжижения смазок, не предусмотренные инструкциями, применять запрещается!

Перед нанесением смазок поверхность резьб труб и муфт должна быть очищена от грязи и остатков других смазок, а также промыта керосином или дизельным топливом.

I EPME I MAHOC I P PE3PPOBPIX

СОЕДИНЕНИЙ ТРУБ

Для повышения герметичности обсадных труб при повышенных температурах (+200 С°) и давлениях рекомендуются смазки на силиконовой основе, с кремнийорганическими соединениями – например, **Р-402.** Смазка морозоустойчива, и подходит для труб с резьбой типа ТБО, ОТТМ, ОТТГ

4 TROVEOU LIQU

Для колонн, спускаемых в газовые и газоконденсатные скважины, применяются смазки на базе эпоксидных смол с наполнителями, либо фторопластовые ленты **ФУМ**.

При уплотнении лентой ФУМ нет необходимости в применении специальных смазок, однако резьба должна быть закрыта **не менее чем на 2/3** от ее длины!

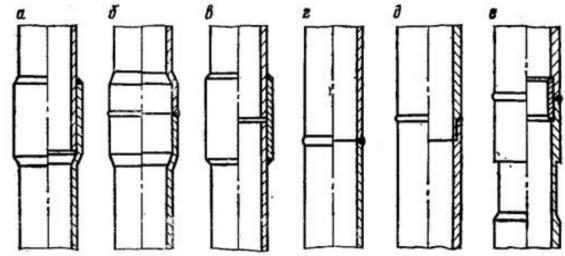
Известны случаи применения мягкого металла (алюминия, цинка, свинца и др.) для герметизации резьбовых соединений.

Разработка ООО «Полимер Сервис» - самосмазывающее фтор-полимерное сухое покрытие резьбы, нанесенное на заводе-изготовителе.

Технология обеспечивает многократное свинчивание резьб без применения смазывающих материалов в промысловых условиях и гарантирует герметичность соединения.

I EPME I MAHOC I D PE3DDOBDIX **СОЕДИНЕНИЙ ТРУБ**ФАКТОРЫ ПОТЕРИ ГЕРМЕТИЧНОСТИ КОЛОННЫ

Геологические	Технико-экономические
Обвал стенок; выброс флюида; смятие колонн из-за АВПД и высоких пластовых температур; набухание породы; пробкообразование пород и продуктивных пластов; высокая сейсмическая активность.	Не соответствующие условиям конструкция и профиль скважин; способ бурения; технология спуска и цементирования ОК, оборудования устья скважин; применяемая резьбовая смазка; освоение, эксплуатация, ПРС и КРС.
Физико-механические	Технологические
Прочность; проницаемость; пластичность тампонажного камня; прочность и стойкость материала труб; коэффициент линейного расширения труб и горных пород; свойства фильтрационной корки.	Нарушение организации процесса спуска обсадной колонны; подача некачественных труб; неточный расчет обсадной колонны; несвоевременный долив скважины; некачественное соединение колонны (перенатяжение, загрязнение, свинчивание не по резьбе)


по причине некачественного соединения звеньев колонны.

ТИПЫ СОЕДИНЕНИЙ

Сварное соединение труб

наиболее Одним И3 эффективных способов повышения герметичности сварное является соединение обсадных труб. В-основном, такой ТИП соединения используется направления ДЛЯ И кондуктора.

Прочность стыкосварного соединения близка (а в ряде случаев даже равна) к прочности тела трубы.

Сварные соединения обсадных труб: а - раструбное, б - двухраструбное, в муфтовое,

г - встык, д - ниппель-раструбное, е - двухраструбное с центрирующим кольцом.

Преимущества:

- Облегчение конструкцию скважины (за счет отсутствия муфт колонну можно спускать при меньшем диаметре скважины);
- Удешевление обсадных труб (изготовление производится без резьб).

МАТЕРИАЛ ТРУБ

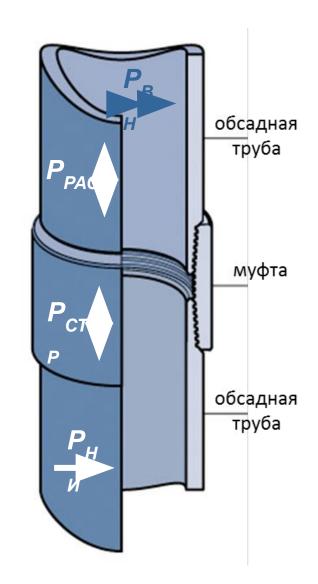
По виду используемого материала обсадные трубы подразделяют на *стальные* и *легкосплавные*.

Показатель		385	Группы прочности стали												
Показатель	Д	K	E	Λ	M	P	T								
Временное сопротивление $\sigma_{\text{п}}$, МПа, не менее	637	687	735	784	882	980	1078								
Предел текучести $\sigma_{\scriptscriptstyle T}$, МПа, не менее	373	490	539	637	735	882	980								
Относительное удлинение δ,	16	12	12	12	12	12	12								
%, не менее	12	10	10	10	10	10	10								
Относительное сужение пос- ле разрыва ψ, %, не менее	40	40	40	40	40	40	40								
Ударная вязкость КСV, Дж/м², не менее	39,2	39,2	39,2	39,2	39,2	29,4	29,4								

Применение легкосплавных обсадных труб (ЛОТ) целесообразно в эксплуатационных скважинах с агрессивными пластовыми флюидами при повышенном содержании сероводорода и диоксида углерода, где использование обычных стальных труб становится невозможным, а применение импортных труб из специальных марок сталей требует значительных затрат на их приобретение.

Для изготовления экспериментальных труб ЛОТ-240/10 и ЛОТ-168/10 используется алюминиевый сплав **Д16Т.**

ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ


• Прочность на смятие наружным избыточным давлением (критическое давление) $P_{\mu\nu}$

Характеризуется разницей между давлением в затрубном и трубном пространстве.

• Прочность на разрыв внутренним давлением ${m P}_{{m B}{m H}}$

Характеризуется величиной внутреннего давления, при котором напряжение в теле трубы достигает предела текучести.

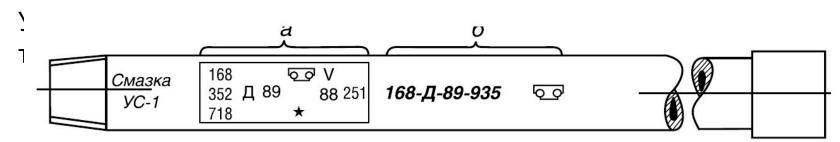
- Прочность на растяжение по телу трубы (на пределе текучести металла) P_{PACT}
- Прочность на разрыв в соединении обсадных труб (страгивающая нагрузка) P_{CTP}

УСЛОВНОЕ ОБОЗНАЧЕНИЕ ОБСАДНЫХ ТРУБ И МУФТ

- **У.О.** обсадных труб должно включать тип соединения (кроме труб с короткой треугольной резьбой), условный диаметр трубы, толщину стенки, группу прочности и обозначение настоящего стандарта.
- **У.О. муфт** должно включать тип соединения (кроме муфт к трубам с короткой треугольной резьбой), условный диаметр трубы, группу прочности, вид муфты (для специальных муфт к трубам ОТТМ и ОТТГ) и обозначение настоящего стандарта.

Примеры условных обозначений:

Группа прочности Д, условный диаметр 245 мм, толщиной стенки 10 мм:


- 245-10-Д ГОСТ 632-80 для труб с короткой треугольной резьбой;
- **245-Д ГОСТ 632-80** для муфт к этим трубам;
- У-245-10 Д ГОСТ 632-80 для труб с удлиненной треугольной резьбой;
- **У-245-Д ГОСТ 632-80** для муфт к этим трубам;
- ОТТМ-245-10-Д ГОСТ 632-80 для труб с трапецеидальной резьбой;
- **ОТТМ-245-Д ГОСТ 632-80** для муфт нормальных к этим трубам;
- **ОТТМ-245-Д-С ГОСТ 632-80** для муфт специальных (с уменьшенным наружным диаметром) к этим трубам.

МАРКИРОВКА ОБСАДНЫХ ТРУБ

На каждой трубе на расстоянии 0,4-0,6 м от конца, свободного от муфты выбивают **клеймом** (а):

- Условный диаметр, мм (168);
- Порядковый номер в партии (352);
- Номер плавки (718);
- Группу прочности металла (Д);
- Толщину стенки, мм (без запятой) (89);
- Товарный знак завода изготовителя;
- Месяц и год выпуска (V 88);
- Номер партии термообработки (251)

Часть маркировки дублируется **светлой краской** по телу трубы (б):

Часть 2 Спуск обсадной колонны.

ПОДГОТОВКА ОБСАДНЫХ ТРУБ

Проверка труб перед спуском:

- Визуальный контроль труб (наружный осмотр, проверка резьбы);
- Снятие консервационной смазки с резьбовых соединений.
- Гидравлические испытания (опрессовка);
- Шаблонирование внутреннего диаметра (на приемных мостках или при подаче очередной трубы на роторный стол).

На заводе-изготовителе и базе предприятия:

Предельное давление для эксплуатационных и промежуточных колонн должно превышать ожидаемое внутреннее избыточное давление на 5–20 %. Трубу выдерживают под максимальным давлением не менее 10 с. Труба признается пригодной, если не обнаруживается следов проникания влаги изнутри. У прошедшей испытания трубы на прочищенные и смазанные резьбы навинчивают специальные предохранительные колпаки для их защиты от повреждения при транспортировке на буровую.

В случае отсутствия сертификата завода изготовителя с отметкой о проведении гидравлического испытания оно проводится на буровой площадке в специально оборудованном месте.

При транспортировании труб к месту проведения работ и при перемещении на буровой:

Запрещается перетаскивать трубы волоком, перевозить их при больших пролетах между опорами. Для предохранения резьб труб применяются ниппели и предохранительные кольца. При разгрузке труб запрещается их сбрасывание. Во избежание ударов скатываемой трубы применяются деревянные подкладки.

Обсадные трубы укладываются на стеллажах по маркам стали и толщинам стенок секциями в порядке их спуска. При укладке труб на стеллажи между рядами кладутся прокладки; крайние трубы следующего ряда должны отстоять от предыдущего не менее, чем на 1 трубу. Трубы в ряду заклиниваются во избежание скатывания.

Проверка качества изготовления обсадных труб (на буровой перед спуском):

Производится обследование наружного вида обсадных труб, проверка резьб и шаблонирование внутреннего диаметра труб. Для замены негодных труб, которые могут быть отбракованы во время спуска колонны, на буровую заранее привозятся запасные трубы максимальной прочности в количестве 5% от длины колонны.

В случае необходимости проводится опрессовка обсадных труб или дефектоскопия.

Прошедшие визуальный осмотр трубы замеряются по длине для составления плана на спуск обсадных труб – «меры».

23

ПОДГОТОВКА ОБСАДНЫХ ТРУБ

«Мера обсадной колонны» – совокупность длин обсадных труб и используемой технологической оснастки, составленная в порядке, соответствующем очередности сборки и спуску в скважину (также входят параметры «глубина спуска обсадной колонны» и «расстояние от стола ротора до головы»). Причем «мера» ВСЕГДА определяется от стола ротора.

Количество ск/пц-к Усо											Дефекты матара или несоса Степень у доклеткарения з епики																
	14 - 320								Æ		_					<u></u> уд/	овлет	творительно	10			Ŷ					
				40	4	30			+	234	По	оядог	КСГ	уска и длин	на тр	võ		8 ,		20, 37	925550	<u>Carrigo ano</u>		AL N		и. у	
사	Ar	ірни а тру бы	MaMa	Д	Іднию тру бы	**	م	Думно тру бы	* *	٥	ұлинатру б ы	2± 2±	1 -011/19	Дрина тру Сы	# SH SH	1000	Длина тру бы	2±	Длина тру бы	*	Дувена тру бы	*	Дувена тру бы	**	Длина тру бы	*	Длина тру бы
1	6	0,20	38		11,65	75	ф	11,7	112		11,67	149	2 3	11,72	136		12,01	223	11,61	260	11,79	297	11,65	314	T	331	
2	ф	11.71	39		11.63	76		11.81	113		11.58	150		12	187		11.99	224	84 3000	261	11.38	298	11.65	315	/ 	332	1 3
3	ц	0,25	40	ф	11,66	77		11,63	114	-	11,56	151		11,8	188		7 2500000	225	1000000	262	11,79	299	11,72	316	A	333	
4	ф	11,67	41		11,6	78		11,51	115	ф	11,7	152	ф	11,69	189		11,58	226	11,65	263	11,36	300	11,65	317		334	
5	ф	11,76	42		11,6	79		11,65	116		11,7	153		11,6	190		11,46	227	25.2	264	11,79	301		318		33.5	
0		11,8	43		11,69	30	ф	3,000389	117		11,62	154		11,77	191		11,8	228		265	11,78	302		319		336	
7		11,79	44		11,26	81	700	11,77	118		11,6	155		11,64	192	ф	11,61	229	11,52	266	11,6	303		320		337	
8		11.79	45	ф	11.63	82		11.85	119		11.64	156	ф	11.67	193		11.69	230	11.63	267	11.24	304		321		338	
9		11,79	46		11,65	83		11,66	120	ф	12	157		11,67	194		11,82	231	11,57	268	11,34	305		322		339	
0	ф	11,71	47		11,63	84		11,72	121		11,66	158		11,62	195		11,51	232	11,56	269	11,53	306		323		340	
11		11,8	48	\Box	11,62	85	ф	11,73	122		11,7	159		11,65	196	ф	11,38	233	11,64	270	11,8	307		324	Д	341	\Box
12		11,8	49	\Box	11,45	36		11,68	123	\Box	11,63	160	ф	11,55	197		11,37	234	11,3	271	11,8	308	1	325		342	
13	\Box	11.81	50	ф	11.51	87	'	11.68	124	ф	11.83	161		11.8	198	\perp	11.59	235	11.41	272	11.69	309		326		343	
14	\Box	11,79	51	\Box	11,37	88	'	11,64	125		11,85	162		11,66	199	\perp	11,58	236	11,96	273	11,35	310	1	327		344	4
15	ф	11,42	52	\sqcup	11,31	89	Ш'	11,8	126	\perp	11,65	163		11,55	200	ф	11,4	237	11,46	274	11,8	311	1	328		345	4
16	\rightarrow	11,81	53	\sqcup	11,34	90	ф	11,53	127	\sqcup	12,01	164	ф	11,56	201	\perp	11,39	238	12	275	11,8	312		329		346	+
17	\rightarrow	11,81	54	\sqcup	11,39	91	1	11,52	128	ф	11,82	165		11,69	202	1	11,51	239	11,5	276	11,8	313	-	330		347	
18	\rightarrow	11.5	55	ф	11.36	92	<u> </u>	11.52	129	igspace	12	166		11.61	203	\perp	11.54	240	11.98	277	11.7	Q/M:	46.67	сум:	0.00	сум:	0 00
19		11,56	56	\sqcup	11,35	93	<u> </u>	11,6	130	\sqcup	12	167		11,67	204	ф		241	11,99	278	11,81	1					
20	ф	11,87	57	\sqcup	11,81	94	1	11,63	131	\sqcup	12,01	168	ф	11,63	205	\vdash	11,45	242		279	100,634, 438	Pacr	стояние от ст	лола р	/отора до го/	ЛОВЫ	Á
21	\rightarrow	11,67	58	\vdash	11,63	95	ф	0.00000	132	ф	11,43	169	\Box	11,67	206	1	11,52	248	12	280	11,8	4					
22	\rightarrow	11,71	59		11,49	96	 	11,41	133	\sqcup	11,97	170	1	11,63	207	1	11,27	244	1 1 1 1 1 1	281	11,48	4	колонны	J	8,82	_метр	POB
23		11.69	60	ф	11.55	97	 	11.7	134	$oldsymbol{\sqcup}$	11.31	171		11.53	208	1	11.27	245	00,000,000	282	11.81	- In the same of t					
24		11,79	61	\vdash	11,69	98	4	11,49	135	18.8	11,9	172	ф		209	1	11,63	246		283	11,64	Глу	убина спуска	, колот	АНЫ	3	484,45
25	ф	11,79	62	\vdash	11,7	99	<u> </u>	11,61	136	ф	11,88	173		11,51	210	1	11,62	247	0.07/897/89	284	11,81	4					
26		11,79	63	1	11,86	100	ф	11,6	137	\perp	11,59	174	1	11,48	211		11,68	248	11,53	285	11,31	4 7	Примечание	e	8		

ПОДГОТОВКА СТВОЛА СКВАЖИНЫ

О состоянии ствола судят по посадкам/затяжкам при спуске и подъеме бурильной колонны, прохождению геофизических зондов, данным кавернометрии и инклинометрии. Заранее выделяют интервалы, где отмечены затруднения при спуске бурильного инструмента, зоны сужения ствола, образования уступов и т.д. В этих интервалах в подготовительный период проводят выборочную проработку ствола (жесткой компоновкой, либо компоновкой для бурения, но без телесистемы). Если отмечаются трудности в прохождении инструмента, его поднимают и спускают несколько раз.

После выборочной проработки ствол скважины **шаблонируют**. Для этого из обсадных труб собирают секцию длиной около 25 м и на колонне бурильных труб спускают ее в ствол скважины на всю глубину закрепляемого участка (либо то же, но КНБК с жесткостью, соответствующей жесткости обсадной колонны). Через спущенный инструмент **скважину тщательно промывают** до полного выравнивания свойств промывочной жидкости в течение двух циклов.

Во время промывки либо при бурении последних интервалов в закачиваемую промывочную жидкость могут добавить смазочные добавки для облегчения спуска обсадной колонны, либо вязкоупругие составы (ВУСы) / кольматанты для укрепления стенок скважины с целью минимизация вероятности прихвата обсадной колонны.

В практике известен вариант расширения осложненного интервала с

ПОДГОТОВКА ОБОРУДОВАНИЯ И ПЕРСОНАЛА

За 2-3 дня на буровую завозятся запасной буровой рукав, инструмент для спуска, расходные материалы (смазка) и мелкий инструмент.

Подготавливают рабочее место на роторной площадке: убирают инструмент, который не понадобится при спуске колонны, очищают пол буровой, спускают и готовят к работе ключ для свинчивания обсадной колонны с моментомером, готовят сварочный аппарат. Обеспечивается запас раствора и технической воды.

Заблаговременно подвергаются проверке узлы и детали буровой:

- соединения и узлы вышки, ее центричность;
- шахтовые брусья, подвышечные фундаменты;
- талевая система, талевый канат (может потребоваться перетяжка);
- превентор (при необходимости заменяются плашки превентора);
- индикатор веса (при необходимости ставится новая диаграмма);
- буровые насосы (при необходимости заменяют изношенные детали).

Составляется акт готовности БУ к спуску. Проводится инструктаж членов буровой бригады по ТБ и технологии спуска (под роспись).

Тампонажный флот за сутки готовит **необходимое количество тампонажных материалов и техники** согласно программе цементирования.

СПУСК ОБСАДНОЙ КОЛОННЫ

При подаче очередной трубы на роторный стол для навинчивания через нее спускается жесткий **шаблон** для проверки отсутствия загрязнения или внутренних дефектов труб.

После подъема трубы на роторный стол производится **откручивание** предохранительного колпачка и **смазывание** резьбовых соединений.

Обсадные колонны **свинчиваются** с помощью специального ключа с моментомером (Weatherford или ГКШ).

Муфтовые соединения низа колонны, а также последующие 5–10 муфт после закрепления их **обвариваются** (во избежание откручивания их при спуске либо при разбуривании цементного стакана).

Скорость спуска колонны поддерживают в пределах 0,3–0,8 м/с, снижая по мере спуска башмака (во избежания посадок и гидроразрыва пласта).

СПУСК ОБСАДНОЙ КОЛОННЫ

Если колонна не оснащена самозаполняющимся обратным клапаном, не реже чем через 50-100 м доливают промывочную жидкость внутрь колонны, чтобы не допустить смятия труб наружным избыточным давлением.

По мере необходимости проводят промежуточные промывки с расхаживанием для удаления шлама и сальников и предупреждения аномального роста давления при заключительной промывке.

Для предупреждения прихвата обсадной колонны нельзя в течение длительного времени оставлять ее в скважине без движения и циркуляции.

В случае падения уровня жидкости в затрубном пространстве **необходимо** заполнять его буровым раствором для предупреждения ГНВП.

Колонна обсадных труб на забой **не ставится**, после ее цементирования сохраняется в напряженном состоянии под натягом.

По окончании спуска проводится **заключительная промывка скважины** для последующего цементирования. В это время расставляется и обвязывается цементировочная техника.

Аварии с обсадными колоннами

Аварии со спускаемыми обсадными колоннами:

- 1. Прихваты обсадных колонн в связи с некачественной подготовкой ствола скважины перед спуском, недостаточным количеством смазочных добавок в буровом растворе, наличием в стволе резких изменений кривизны и азимута, длительными остановками во время спуска ОК (также возможен дифференциальный прихват).
- 2. Падение обсадных труб в связи с неисправностями оборудования спуско-подъемного комплекса буровой установки (элеваторов, клиньев и т.д.), наличием уступов в стволе скважины, что приводит к открытию элеватора, некачественной нарезкой резьб на обсадных трубах, свинчиванием резьбовых соединений с перекосом их осей, приложением растягивающих нагрузок выше допустимых, сильным или слабым скручиванием труб, неправильным сопряжением резьб трубы и муфты.
- **3. Смятие обсадных труб** в связи с несвоевременным доливом жидкости в обсадную колонну, чрезмерной разрузкой обсадной колонны на забой скважины.

Ликвидация аварий:

- 1. При прихвате обсадной колонны пытаются восстанавить циркуляцию промывочной жидкости и одновременно расхаживать обсадную колонну. Если нет результатов, то пытаются освободить колонну при помощи ванны или сплошной промывки нефтью или кислотами. В случае прихвата обсадной колонны без циркуляции бурового раствора ее пытаются восстановить благодаря отверстиям, простреленным в обсадной колонны выше прихваченной области. Если нет результата проводится либо ликвидация скважины, либо цементирование колонны в данном положении с последующим бурением под нижеследующую колонну, либо прихваченную обсадную колонну извлекают (сначала обрезают/откручивают неприхваченный участок, потом труборезкой разрезают прихваченные трубы на части и поднимают их с помощью труболовки; возможен вариант срезания колонны с предварительным ее обуриванием).
- 2. При **падении обсадных труб** их извлекают ловителем и труболовкой.
- 3. При *отсоединении нижних труб обсадной колонны при ее спуске* необходимо поднять колонну, извлечь отсоединенный участок, продолжить спуск колонны. Также можно попытаться соединить эти части путем спуска направляющего конуса с последующим вращением и спуском верхней секции на нижнюю.

4. В случае смятия обсадной колонны необходимо поднять обсадную колонну, заменить

СПУСК ОБСАДНОЙ КОЛОННЫ Карта процесса (роторный стол)

Спуск колонны/ Смазывание резьбы 28 с / 23 с Бурильщик, 3 п/бур

Установка колонны в клинья 3 с / 2 с Бурильщик

Освобождение элеватора 3 с / 2 с 1 п/бур

Подача трубы с козырька 4 с / 3 с 3 п/бур

Подача трубы в элеватор 3 с / 2 с 1 и 3 п/бур

Подъем трубы с козырька 17 с / 16 с Бур-к, 1 и 3 п/бур

колпачка с ниппеля
10 с / 6 с
3 п/бур

Установка трубы в муфту **5 с / 4 с** 1 п/бур

|| Пуск шаблона 49 с / 34 с 1 п/бур || 3 п/бур

с клиньев 5 с / 4 с Бурильщик

* Операция Время среднее/лучшее Исполнитель

СПУСК ОБСАДНОЙ КОЛОННЫ Карта процесса (приемные мостки)

* Операция Время среднее/лучшее Исполнитель

СПУСК ОБСАДНОЙ КОЛОННЫ

Система спуска обсадных колонн (ССОК)

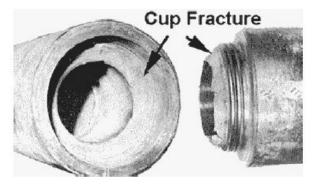
ССОК собой представляет работы комплексную систему ДЛЯ обсадными колоннами. CCOK СОСТОИТ И3 следующих Место крепления Верхняя панель элементов: трубного зажима Управляемые штропы с элеваторои продиний модуль с элеваторои продиний модуль Подвес для кабеля Специальный клиновый захват; Балансировочный Гидроцилиндр гидроцилиндр Гидравлическая система (15 МПа); Нажимной диск Вал несущего диска Система поддержания равновесия; несущий диск Гидроцилиндр **SCOK** обеспечивает захват и ния. штроп обсадных удержание Нажимной диск Нижний модуль подшипников одновременное вращение Нажимная втулка обсадной расхаживание Кожух бурового колонны, циркуляцию любой Элеватор раствора момент Направляющий времени.

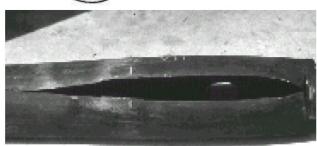
ССОК работает в широком диапазоне температур, универсальна, применяется совместно с СВП; она значительно упрощает процесс спуска ОК, снижает количество производимых операций, НПВ и риски.

Часть 3 Расчет обсадных колонн на прочность

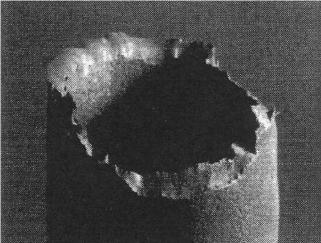
нагрузки, действующие на обсадную колонну

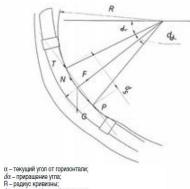
Осевое растяжение


Радиальное растяжение



Радиальное смятие




скручивание

Изгиб

- п радиую куменально, ба участок обсадной колонны; G вес участка обсадной колонны; N сипа сопротивления движению; F нормальная составляющая прижимающего усилия;
- P сила трения; Т усилие спуска.

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ОБСАДНУЮ КОЛОННУ

В процессе спуска колонны, цементирования, заключительных работ, испытания, освоения обсадные колонны испытывают целую серию нагрузок.

Нагрузки различаются:

- по виду,
- по источнику нагружения.

Нагрузки изменяются:

- по величине,
- по длине колонны,
- по времени.

Основная задача расчёта сводится к:

- 1. выбору главных нагрузок;
- 2. определению периода времени, когда эти нагрузки достигают максимальных значений;
 - 3. Расчёту величины этих нагрузок;
- 4. Подбору обсадных труб и оснастки с соответствующими прочностными характеристиками.

В конечном итоге, ОК в любом сечении по длине должна соответствовать действующим нагрузкам с требуемым запасом.

Расчёт ОК производится в соответствии с действующей инструкцией по расчёту обсадных колонн от 1997 года.

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ОБСАДНУЮ КОЛОННУ

Спуск ОК (в процессе спуска обсадная колонна периодически подвешивается в клиновом захвате для наращивания очередной трубы, проводятся промежуточные промывки заколонного пространства, долив колонны с незаполняющимся обратным клапаном, расхаживание и вращение колонны в местах посадок):

- осевое растяжение под действием собственного веса, при расхаживании за счёт сил инерции и трения, от внутреннего гидродинамического давления при промывках;
- осевое сжатие (за счёт выталкивающей силы и веса колонны при посадках);
- радиальное смятие (клиновой захват, наружное избыточное давление при незаполненной колонне);
 - кручение (при свинчивании труб и вращении колонны);
- радиальное растяжение за счёт внутренних избыточных гидростатических давлений и гидродинамических давлений (при промывках);
- изгиб (за счёт профиля, веса колонны при посадках и за счёт выталкивающей силы).

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ОБСАДНУЮ КОЛОННУ

Процесс цементирования (заключается в закачке в обсадную колонну тампонажной смеси и продавке её в затрубное пространство. При этом обсадная колонна может подвешиваться на талевой системе буровой установки и для повышения качества цементирования расхаживаться):

- осевое растяжение от собственного веса, от гидродинамических внутренних давлений и от сил инерции и трения при расхаживании;
- осевое сжатие (от действия выталкивающей силы)
- изгиб (за счёт профиля и действия выталкивающей силы);
- радиальное смятие (за счёт наружных избыточных гидростатических и гидродинамических давлений);
- радиальное растяжение (за счёт внутренних избыточных и гидростатических и гидродинамических давлений).

нагрузки, действующие на обсадную колонну

Контроль качества цементирования (на этапе заключительных работ по цементированию обсадная колонна подвешивается в колонной головке с последующим контролем качества цементирования проверкой герметичности. Герметичность проверяется двумя способами: опрессовкой и снижением уровня):

- осевое растяжение (после ОЗЦ колонна натягивается и закрепляется в колонной головке натяжение);
- радиальное растяжение (избыточное внутреннее давление при опрессовке);
- радиальное смятие (наружное избыточное давление при проверке герметичности снижением уровня).

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ОБСАДНУЮ КОЛОННУ

Испытание и освоение (скважина законченная бурением и креплением подлежит испытанию и освоению. При испытании разведочных скважин или освоении добывающих производится перфорация колонны в интервале продуктивного пласта и вызов притока снижением давления в скважине):

- радиальное смятие (при вызове притока возникает избыточное наружное давление);
- радиальное растяжение (внутреннее избыточное давление после заполнения колонны пластовым флюидом и закрытом устье).

НАГРУЗКИ, ДЕЙСТВУЮЩИЕ НА ОБСАДНУЮ КОЛОННУ

Эксплуатация (в процессе эксплуатации скважины давление пластового флюида постоянно снижается, достигая минимума в конце эксплуатации. Для интенсификации притока в добывающей скважине могут проводиться работы по воздействию на призабойную зону пласта, например гидроразрыв, закачка цементного раствора при ремонтных работах, возможен также перевод добывающей скважины на нагнетательную):

- радиальное смятие (за счёт избыточного наружного давления при снижении уровня флюида или давления газа в колонне в конце эксплуатации);
- радиальное растяжение (за счёт избыточного внутреннего давления при гидроразрыве пород, переводе скважины в нагнетательную и ремонтных работах).

нагрузки, действующие на обсадную колонну

Анализ BCEX рассмотренных выше нагрузок, проведённых специалистами с применением теоретических расчётов и в экспериментах, показал, что наиболее опасными для обсадных колонн являются нагрузки от действия **избыточных наружных** и статических внутренних давлений и осевые растягивающие (страгивающие) нагрузки от собственного веса. На эти виды нагрузок производится расчёт обсадных колонн и выбор труб для них с учётом коэффициентов запаса, которые даны в инструкции по расчёту обсадных колонн. Здесь же, на все эти виды нагрузок, даны критические значения для различных типов труб по ΓOCT 632-80.

В разные периоды времени *наружное избыточное давление* достигает наибольших значений. Имеются *три таких случая*:

- при цементировании в конце продавки тампонажного раствора и снятом на устье давлении;
- при снижении уровня жидкости в колонне при испытании на герметичность и при вызове притока (в начале эксплуатации);
- в конце эксплуатации за счет снижения уровня флюида для нефтяных скважин и снижения давления для газовых скважин.

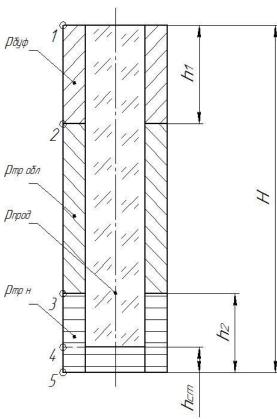


Схема расположения жидкостей в конце продавки тампонажного раствора при снятом устьевом давлении:

 ho_{npoq} — плотность продавочной жидкости; ho_{floor} — плотность буферной жидкости; ho_{floor} — плотность болегченного тампонажного раствора; ho_{floor} — плотность тампонажного раствора нормальной плотности; ho_{floor} — высота столба буферной жидкости; ho_{floor} — высота столба тампонажного раствора нормальной плотности; ho_{cr} — высота цементного стакана

Точка 1 (устье скважины).

$$P_{_{HI}} = 0;$$

$$P_{el} = 0;$$

$$P_{\mu \mu l} = 0.$$

Точка 2 (граница изменения жидкости за колонной)

$$P_{H2} = \rho_{\delta y \phi} \cdot g \cdot h_I$$
;

$$P_{e2} = \rho_{npoo} \cdot g \cdot h_I$$
;

$$P_{\mu u2} = (\rho_{\delta y\phi} - \rho_{npoo}) \cdot g \cdot h_{I}.$$

Точка 3 (граница изменения жидкости за колонной).

$$P_{_{\mathit{H}\mathcal{S}}} = g \cdot (\rho_{_{\mathit{O}\mathcal{Y}\mathcal{Y}}} \cdot h_{_{\mathit{I}}} + \rho_{_{\mathit{MP}}\,_{\mathit{O}\mathcal{O}\mathcal{I}}} \cdot (H - h_{_{\mathit{I}}} - h_{_{\mathit{2}}}));$$

$$P_{e3} = \rho_{npoo} \cdot g \cdot (H - h_2);$$

$$P_{\mu\mu3} = P_{\mu3} - P_{e3}$$

Точка 4 (граница изменения жидкости в колонне).

$$P_{_{H4}}=g\cdot(\rho_{_{\textit{б}\textit{y}\textit{\phi}}}\cdot h_{_{l}}+\rho_{_{\textit{mp}\,\textit{o}\,\textit{o}\,\textit{n}}}\cdot(H-h_{_{l}}-h_{_{2}})+\rho_{_{\textit{mp}\,\textit{H}}}\cdot(h_{_{2}}-h_{_{\textit{cm}}}));$$

$$P_{_{64}} = \rho_{_{npoo}} \cdot g \cdot (H - h_{_{cm}});$$

$$P_{\mu\mu4} = P_{\mu4} - P_{\mu4}$$

Точка 5 (забой скважины).

$$P_{H5} = g \cdot (\rho_{\text{буф}} \cdot h_1 + \rho_{\text{mp obn}} \cdot (H - h_1 - h_2) + \rho_{\text{mp H}} \cdot h_2);$$

$$P_{65} = \rho_{npoo} \cdot g \cdot (H - h_{cm}) + \rho_{mp H} \cdot g \cdot h_{cm};$$

$$P_{\mu\nu5} = P_{\mu5} - P_{e5}$$
.

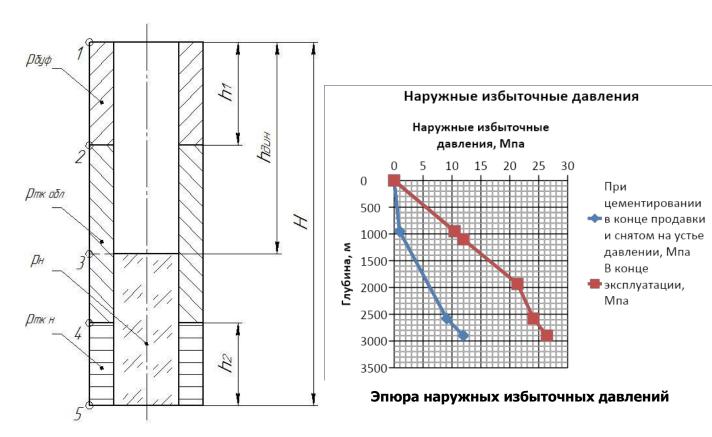


Схема расположения жидкостей в конце эксплуатации нефтяной скважины:

 $ho_{_H}$ — плотность нефти; $ho_{_{0}\phi}$ — плотность буферной жидкости; $ho_{_{78}\phi_{0}}$ — плотность облегченного тампонажного камня; $ho_{_{78}}$ — плотность тампонажного камня нормальной плотности; $h_{_1}$ — высота столба буферной жидкости; $h_{_2}$ — динамический уровень скважины; $h_{_2}$ — высота столба тампонажного камня нормальной плотности

Расчёт *внутренних избыточных давлений* производится, как и для наружных избыточных давлений для периода времени, когда они достигают максимальных давлений.

Имеются *два таких случая*.

- 1. при цементировании в конце продавки тампонажной смеси, когда давление на цементировочной головке достигает максимального значения.
- 2. при опрессовке колонны с целью проверки её герметичности.

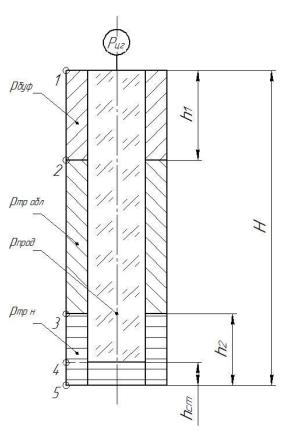


Схема расположения жидкостей в конце продавки тампонажного раствора, когда давление на цементировочной головке достигает максимального значения:

 P_{ur} — давление на цементировочной головке; ρ_{npoa} — плотность продавочной жидкости; ρ_{oyo} — плотность буферной жидкости; ρ_{oyo} — плотность облегченного тампонажного раствора; ρ_{npoa} — плотность тампонажного раствора нормальной плотности; h_1 — высота столба буферной жидкости; h_2 — высота столба тампонажного раствора нормальной плотности; h_{cr} — высота шементного стакана

Точка 1 (устье скважины).

$$P_{gl} = P_{uz};$$

$$P_{ul} = 0;$$

$$P_{ul} = P_{ul}$$

Точка 2 (граница изменения жидкости за колонной)

$$P_{e2} = P_{uz} + \rho_{npoo} \cdot g \cdot h_{l};$$

$$P_{H2} = \rho_{\delta v db} \cdot g \cdot h_{l}$$
;

$$P_{eu2} = P_{uz}^T + (\rho_{npoo} - \rho_{\delta y\phi}) \cdot g \cdot h_I.$$

Точка 3 (граница изменения жидкости за колонной).

$$P_{e3} = P_{uz} + \rho_{npoo} \cdot g \cdot (H - h_2);$$

$$P_{H3} = g \cdot (\rho_{\delta V\phi} \cdot \dot{h}_1 + \rho_{mp o\delta \pi} \cdot (H - h_1 - h_2));$$

$$P_{eu3} = P_{e3} - P_{u3}$$
.

Точка 4 (граница изменения жидкости в колонне).

$$P_{_{64}} = P_{_{U2}} + \rho_{_{npoo}} \cdot g \cdot (H - h_{_{cm}});$$

$$P_{_{H4}} = g \cdot (\rho_{_{6y\phi}} \cdot h_{_{1}} + \rho_{_{mp\ o6\pi}} \cdot (H - h_{_{1}} - h_{_{2}}) + \rho_{_{mp\ H}} \cdot (h_{_{2}} - h_{_{cm}}));$$

$$P_{eu4} = P_{e4} - P_{u4}.$$

Точка 5 (забой скважины).

$$P_{65} = P_{uc} + \rho_{npoo} \cdot g \cdot (H - h_{cm}) + \rho_{mp \, H} \cdot h_{cm};$$

$$P_{H5} = g \cdot (\rho_{\delta y \phi} \cdot h_1 + \rho_{mp o \delta n} \cdot (H - h_1 - h_2) + \rho_{mp H} \cdot h_2);$$

$$P_{eu5} = P_{e5} - P_{\mu 5}.$$

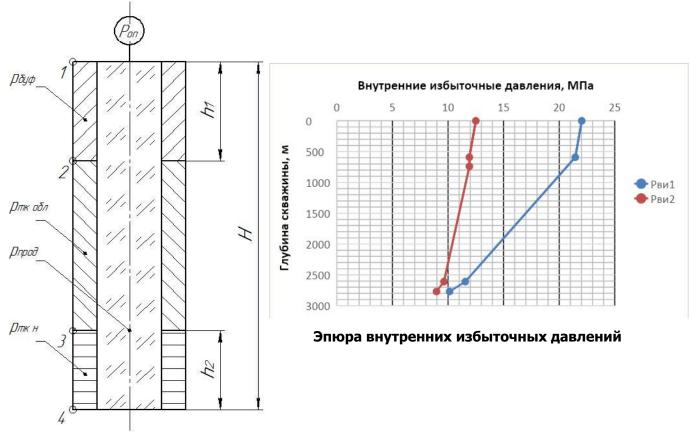


Схема расположения жидкостей при опрессовке обсадной колонны: P_{on} — давление опрессовки; ρ_{npoq} — плотность продавочной жидкости; ρ_{gop} — плотность облегченного тампонажного раствора; $\rho_{\eta p,h}$ — плотность тампонажного раствора нормальной плотности; h_1 — высота столба буферной жидкости; h_2 — высота столба тампонажного камня нормальной плотности

Прочностные характеристики обсадных труб:

- 1 Прочность на смятие наружным давлением или критическое давление $P_{\kappa o}$.
- 2 Прочность на разрыв внутренним давлением P_{вн}.
 Характеризуется величиной внутреннего давления, при котором напряжение в теле трубы достигает предела текучести.
- 3 Прочность на растяжение по телу трубы (на пределе текучести металла) P_{pacm} .
- 4 Прочность на разрыв в соединении обсадных труб или страгивающая нагрузка P_{cmp} .

Характеристика обсадной колонны по ее длине

№ секций	Группа прочности	Толщина стенки, мм	Длина, м	Вес, кг			
				трубы	секции	суммар- ный	Интервал установки, м
1	2	3	4	5	6	7	8
1	Д	7,4	130	19,788	2572,44	2572,44	3280 – 3150
2	Д	6,4	650	17,238	11204,7	13777,14	3150 – 2500
3	Д	5,7	2500	15,606	39015	52792,14	2500 – 0