Обмен веществ и преобразование энергии в клетке.

Пластический и энергетический обмен.

Обмен веществ (метаболизм (от греч. «превращение, изменение»)) – совокупность всех ферментативных реакций клетки, связанных между собой и с внешней средой, состоящая из пластического и энергетического обменов.

Обмен веществ — полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие, деятельность и жизнь в целом.

Этапы метаболизма

- <u>Первый этап</u> ферментативное расщепление белков, жиров и углеводов до растворимых в воде аминокислот, моно- и дисахаридов, глицерина, жирных кислот и других соединений, происходящее в различных отделах желудочно-кишечного тракта, и всасывание их в кровь и лимфу.
- <u>Второй этап</u> транспорт питательных веществ кровью к тканям и клеточный метаболизм, результатом которого является их ферментативное расщепление до конечных продуктов. Часть этих продуктов используется для построения составных частей мембран, цитоплазмы, для синтеза биологически активных веществ и воспроизведения клеток и тканей. Расщепление веществ сопровождается выделением энергии, которая используется для процесса синтеза и обеспечения работы каждого органа и организма в целом.
- <u>Тремий этам</u> выведение конечных продуктов метаболизма в составе мочи, кала, пота, через легкие в виде CO2 и т. д.

Обмен веществ состоит из двух противоположных, одновременно протекающих процессов

Пластический обмен (анаболизм, ассимиляция) -

Энергетический обмен (катаболизм, диссимиляция) -

Реакции

биологического синтеза

высокомолекулярных веществ из простых, протекающие с

поглощением энергии

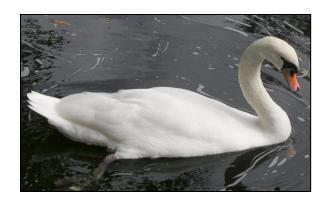
Фотосинтез, биосинтез

совокупность

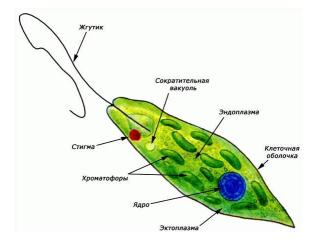
реакций расщепления

высокомолекулярных веществ, протекающих с выделением энергии.

Процесс потребления веществ и энергии называется питанием


Энергия необходима для того, чтобы:

- осуществлялся синтез веществ, необходимых для роста организма;
- сокращались мышцы и передавались нервные импульсы;
- вещества могли транспортироваться из клетки в клетку;
 - температура тела поддерживалась постоянной.


Типы питания организмов:

автотрофное гетеротрофное миксотрофное

Автотрофы –

организмы, живущие за счет неорганических источников углерода (например, углекислого газа)

• 1) фототрофы -

синтезируют органические вещества за счёт энергии света;

- Фототрофы это растения и некоторые бактерии (в том числе сине-зелёные водоросли).
- Процесс фототрофного питания называется фотосинтезом (преобразование световой энергии в энергию химических связей).

2) Хемотрофы - синтезируют органические вещества за счёт энергии химических связей.

• Хемосинтезирующие бактерии получают энергию от различных химических реакций — окисления водорода, серы, железа, аммиака и других веществ.

Вот некоторые реакции, освобождающие энергию:

$$2NH3 + 3O2 \rightarrow 2HNO2 + 2H2O + Q.$$

$$2HNO2 + O2 \rightarrow 2HNO3 + Q.$$

$$4FeCO3 + O2 + 6H2O \rightarrow 4Fe(OH)3 + 4CO2 + Q.$$

$$2S + 3O2 + 2H2O \rightarrow 2H2SO4 + Q.$$

I етеротрофы -

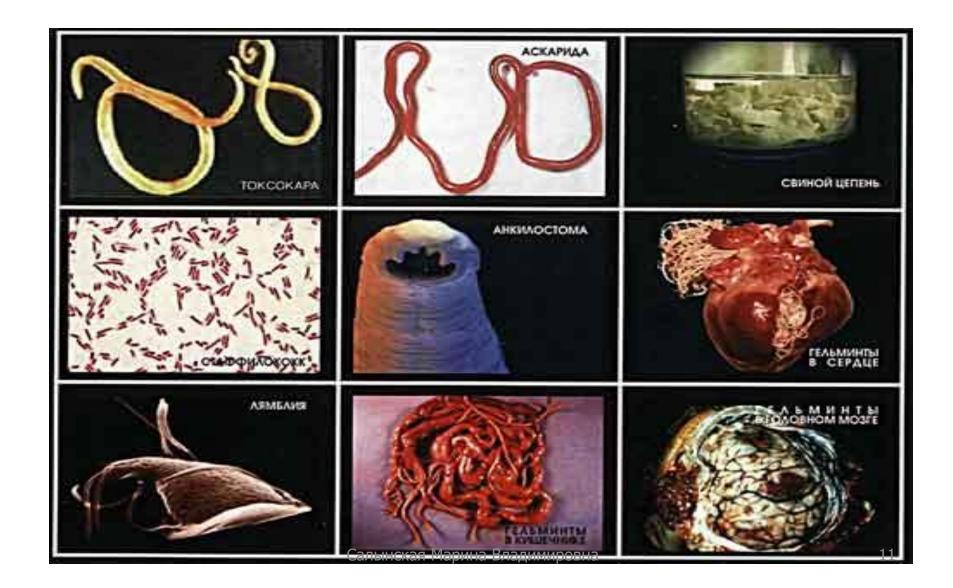
организмы, получающие необходимую для жизнедеятельности энергию путем окисления органических веществ, содержащихся в пище. (некоторые бактерии, грибы и все животные)

Биотрофы

(паразиты) -

организмы, питающиеся органическими

живых тел


веществами

Сапротрофы -

организмы, питающиеся органическими веществами содержащимися в испражнениях,

или мертвыми организмами

Биотрофы (паразиты)

Сапротрофы

Миксотрофы

Некоторые организмы (например, хищные растения) сочетают в себе признаки как автотрофов, так и гетеротрофов.

Такие организмы называются миксотрофы (росянка, венерина мухоловка, эвглена зелная)

Метаболизм

Пластический обмен

Анаболизм

Ассимиляция

Энергетический обмен

Катаболизм Диссимиляция

Энергетический обмен

Этапы внутриклеточного энергетического обмена

Подготовительны й

Бескислородный (анаэробный)

Кислородный (аэробный)

Салынская тарина владимировна

Вся энергия при этом рассемвается в виде тепла.

2. Бескислородный этап (анаэробное дыхание) – гликолиз.

- Осуществляется в цитоплазме,
- с мембранами не связан;
- в нём участвуют ферменты;
- расщеплению подвергается глюкоза.

Суммарное уравнение реакции гликолиза:

 $C_6H_{12}O_6+2H_3PO_4+2A\mathcal{I}\Phi=2C_3H_4O_3+2AT\Phi+2H_2O$

глюкоза г

пировиноградная

кислота (ПВК)

В результате гликолиза:

• 60% выделившейся энергии рассеивается в виде тепла

40% запасается в виде 2АТФ

Получившаяся пировиноградная кислота при недостатке кислорода в клетках животных, а также клетках многих грибов и микроорганизмов, превращается в молочную кислоту $C_3H_6O_3$

$${
m C_3H_4O_3}$$
 пировиноградная кислота ${
m HAJ\cdot H + H^+}$ ${
m C_3H_6O_3}$ молочная кислота

В мышцах человека при больших нагрузках и нехватке кислорода образуется молочная кислота и появляется боль.

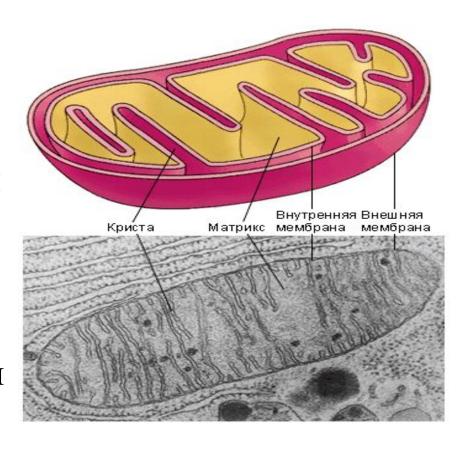
У нетренированных людей это происходит быстрее, чем у людей тренированных.

Основные превращения при спиртовом брожении

При недостатке кислорода в клетках растений, а также в клетках некоторых грибов (например, дрожжей), вместо гликолиза происходит

спиртовое брожение: пировиноградная кислота распадается на этиловый спирт C_2H_5OH и углекислый газ CO_2 :

 $C_6H_{12}O_6+2H_3PO_4+2A\mathcal{I}\Phi=2C_2H_5OH+2CO_2+2AT\Phi+2H_2O$



В результате гликолиза глюкоза распадается не до конечных продуктов (СО2 и Н2О), а до богатых энергией соединений (молочная кислота, этиловый спирт) которые, окисляясь дальше, могут дать её в больших количествах.

Поэтому у аэробных организмов после гликолиза (или спиртового брожения) следует третий, завершающий этап энергетического обмена — полное кислородное расщепление, или клеточное дыхание

3. Кислородный этап энергетического обмена (аэробное дыхание)

- осуществляется в митохондриях,
- связан с матриксом митохондрий и внутренней мембраной,
- в нём участвуют ферменты,
- расщеплению подвергается молочная кислота

 $2C3H6O3 + 6O2 + 36AД\Phi + 36H3PO4 = 6CO2 + 42H2O + 36AT\Phi$

При кислородном дыхании окончательными продуктами окисления являются

- углекислый газ и вода,
- а выделяющаяся при окислении энергия
- 45 %рассеивается в виде тепла,
- 55% запасается в виде 36 молекул $AT\Phi$

Суммарная реакция энергетического обмена:

$$C_6H_{12}O_6+6O_2=6CO_2+6H_2O+38AT\Phi$$
.

- 2 молекулы $AT\Phi$ запасаются в ходе бескислородного расщепления каждой молекулы глюкозы на втором, бескислородном, этапе
- 36 молекул $AT\Phi$ запасаются *на третьем*, кислородном этапе Таким образом, в результате полного расщепления одной молекулы глюкозы образуется 38 **молекул** $AT\Phi$

Для получения энергии в клетках, кроме глюкозы, могут быть использованы и другие вещества: липиды, белки. Однако ведущая роль в энергетическом обмене у большинства организмов принадлежит сахарам.

Пластический обмен

• Продолжение следует