ВЫПУКЛЫЙ АНАЛИЗ

ЛЕКЦИЯ 21

7. СУБГРАДИЕНТ И СУБДИФФЕРЕНЦИАЛ ФУНКЦИИ (ПРОДОЛЖЕНИЕ)

7. СУБГРАДИЕНТ И СУБДИФФЕРЕНЦИАЛ ФУНКЦИИ (ПРОДОЛЖЕНИЕ)

7.2. Критерий существование субградиента функции.

7.2. Критерий существования субградиента функции. Следующая теорема является критерием существования субградиента и, следовательно, субдифференциала у функции $I: U \to R^1$.

Теорема 2. Пусть $U \subset \mathbb{R}^n$ - открытое выпуклое множество. Для того, чтобы функция $I: U \to \mathbb{R}^1$ имела непустой субдифференциал в каждой точке $u \in U$ необходимо и достаточно, чтобы эта функция была выпуклой на множестве U.

Доказательство. Необходимость. Пусть для некоторой функции $I:U\to R^1$ справедливо $\partial I(u)\neq\varnothing,\,\forall u\in U.$

Докажем выпуклость функции I. Для всех $u,v\in U,\alpha\in [0,1]$ полагаем

$$u_{\alpha} = \alpha u + (1 - \alpha)v \in U, c(u_{\alpha}) \in \partial I(u_{\alpha}) \neq \emptyset$$

Последовательно подставляем в $I(u) \ge I(v) + \langle c(v), u - v \rangle$, $\forall u \in U$. (1.1) $v \to u_{\alpha}$,

$$\alpha \left| I(u) - I(u_{\alpha}) \ge \langle c(u_{\alpha}), u - u_{\alpha} \rangle, \\ (1-\alpha) \left| I(v) - I(u_{\alpha}) \ge \langle c(u_{\alpha}), v - u_{\alpha} \rangle. \right.$$
 (1)

$$\alpha I(u) + (1-\alpha)I(v) - I(u_{\alpha}) \geq \left\langle c(u_{\alpha}), \alpha u + (1-\alpha)v - u_{\alpha} \right\rangle,$$

$$\alpha I(u) + (1-\alpha)I(v) - I(u_{\alpha}) \ge \left\langle c(u_{\alpha}), \alpha u + (1-\alpha)v - u_{\alpha} \right\rangle \Longrightarrow$$

$$\alpha I(u) + (1-\alpha)I(v) \ge I(u_{\alpha}) \Rightarrow I(u_{\alpha}) \le \alpha I(u) + (1-\alpha)I(v)$$

$$I(\alpha u + (1-\alpha)v) \le \alpha I(u) + (1-\alpha)I(v)$$

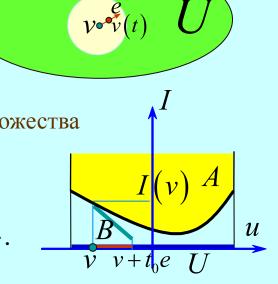
Необходимость доказана.

Достаточность. Пусть $I: U \to R^1$ выпуклая функция и $v \in U$. Надо показать, что $\partial I(v) \neq \emptyset$. Для произвольного $e \in R^n$, $\|e\| = 1$ полагаем v(t) = v + te. В силу открытости множества U для достаточно малых $t_0 > 0$ будет выполняться

$$v(t) \in U, t \in [0, t_0)$$
. Из выпуклости функции I по **теореме 3.7** для всех e существует $\frac{dI(v)}{de}$

производная функции I по направлению e.

В пространстве
$$R^{n+1}$$
 переменных (u, γ) рассмотрим множества $A = \{(u, \gamma) \in R^{n+1} | u \in U; \gamma > I(u) \},$ $B = \{(u, \gamma) \in R^{n+1} | u = v + te; \gamma = I(v) + t \frac{dI(v)}{de}; 0 \le t < t_0 \}.$



Множество $A \subset R^{n+1}$ выпукло. Доказательство этого факта аналогично

доказательству выпуклости надграфика выпуклой функции теорема 4.1.

Множество $B \subset R^{n+1}$ представляет собой отрезок прямой, и поэтому тоже выпукло. Покажем что для малых t_0 будет выполняться

$$A \boxtimes B = \varnothing. \tag{2}$$

В самом деле, пусть $(u, \gamma) \in A$. Имеются две возможности

1)
$$u \neq v + te, \forall t \in [0, t_0) \Rightarrow (u, \gamma) \notin B$$
;

2)
$$\exists t \in [0, t_0): u = v + te$$
. В силу $(u, \gamma) \in A$ выводим

$$\gamma > I(u) = I(v + te) \Rightarrow \gamma - I(v) > I(v + te) - I(v).$$
 (3)

По **лемме 3.1 и**з выпуклости функции $\ I$ для достаточно малых $\ t_0 > 0$ следует

выпуклость функции $\phi(t) = I(v + te), t \in [0, t_0]$. По первому критерию выпуклости

$$\frac{I(v+te)}{\varphi(t)} \stackrel{I(v)}{=} \frac{\frac{dI(v)}{de}}{\varphi(t)} + \varphi'(t)(t-0) \Rightarrow I(v+te) - I(v) \ge t \frac{dI(v)}{de}.$$

Из (3)
$$\gamma - I(v) > I(v + te) - I(v)$$
 (3) отсюда $I(v + te) - I(v) \ge t \frac{dI(v)}{de}$ выводим $\ge t \frac{dI(v)}{de}$

$$\frac{dI(v)}{de} = \frac{dI(v)}{de}$$

$$\frac{dI(v)}{de} = \frac{dI(v)}{de}$$

$$\frac{dI(v)}{de} = \frac{dI(v)}{de}$$

$$\frac{dI(v)}{de} = \frac{dI(v)}{de}$$

следует, что
$$(u, \gamma) = (v + te, \gamma) \notin B$$
. Таким образом, $(u, \gamma) \in A \Rightarrow (u, \gamma) \notin B$ и (2) $A \boxtimes B = \emptyset$ (2) действительно имеет место. Тогда существует гиперплоскость Γ

с нормальным вектором
$$n = \binom{d}{\delta} \in R^{n+1}, \ n \neq 0,$$
 отделяющая множества $\overline{A} = \{(u, v) \in R^{n+1} | u \in U: v > I(u) \}$ и $\overline{B} = R$ т. е. для всех $(u, v) \in \overline{A}$

$$\overline{A} = \left\{ (u, \gamma) \in R^{n+1} \middle| u \in U; \gamma \geq I(u) \right\}$$
 и $\overline{B} = B$, т. е. для всех $(u, \gamma) \in \overline{A}$ $\left(v + te, I(v) + t \frac{dI(v)}{de}\right) \in B$, имеет место неравенство Γ

Покажем, что для вектора $n = \begin{pmatrix} d \\ \delta \end{pmatrix}$ имеет место $\delta \geq 0$.

Действительно, из (4)

$$\left\langle d, u \right\rangle + \delta \gamma \ge \left\langle d, v + t e \right\rangle +$$

$$+\delta\left(I(v)+t\frac{{}^{0}}{de}\right),\ t\in[0,t_{0}]$$
 (4)

при $u = v, \forall \gamma > I(v), t = 0$ выводим

$$\langle d, v \rangle + \delta \gamma \ge \langle d, v \rangle + \delta I(v) \Rightarrow \delta \gamma \ge \delta I(v) \Rightarrow \delta \left(\gamma - I(v) \right) \ge 0 \Rightarrow \delta \ge 0.$$

Покажем, что $\delta \neq 0$. От противного $\delta = 0$ из (4) находим

$$\langle d, u \rangle \ge \langle d, v + te \rangle, \ u \in U, t \in [0, t_0].$$
 (5)

Полагаем $u=v+\varepsilon d$. Заметим, что для малых по модулю ε будет выполнено

$$u=v+arepsilon\,d\in U$$
 .

Тогда из (5)

$$\langle d, v + \varepsilon d \rangle \ge \langle d, v + te \rangle \Rightarrow \langle d, \varepsilon d \rangle \ge \langle d, te \rangle \Rightarrow \varepsilon \langle d, d \rangle \ge t \langle d, e \rangle$$

При t=0 отсюда $\varepsilon \langle d,d \rangle \ge t \langle d,e \rangle$, $t \in [0,t_0]$ получим $\varepsilon \|d\|^2 \ge 0$.

В силу произвольности знака числа ${\mathcal E}$ последнее неравенство возможно только если

$$d=0$$
. Однако $\binom{d}{\delta} \neq 0$. Получили противоречие. Таким образом, $\delta>0$.

Разделим неравенство (4)

$$\langle d, u \rangle + \delta \gamma \ge \langle d, v + te \rangle + \delta \left(I(v) + t \frac{dI(v)}{de} \right), (4)$$

на величину $\delta > 0$. В результате получим

$$\left\langle \frac{d}{\delta}, u \right\rangle + \gamma \ge \left\langle \frac{d}{\delta}, v + te \right\rangle + I(v) + t \frac{dI(v)}{de},$$

$$\forall \gamma \ge I(u), u \in U, t \in [0, t_0]. \tag{6}$$

Обозначим
$$c(v) = -\frac{d}{\delta}$$
 и перепишем (6). В результате получим $-\langle c(v), u \rangle + \gamma \ge -\langle c(v), v + te \rangle + I(v) + t \frac{dI(v)}{de}$.

$$I(v)+t\frac{dI(v)}{de}.$$
 (7)

Неравенство (7)
$$-\langle c(v), u \rangle + \stackrel{\rightarrow}{\gamma} \stackrel{\downarrow}{} \geq -\langle c(v), v + \stackrel{0}{t} e \rangle + I(v) + \stackrel{0}{t} \frac{dI(v)}{de}$$
. (7) верно для всех $\gamma \geq I(u)$ и $t \in [0, t_0]$. Полагаем в нем $t = 0$ и устремляем γ к $I(u) + 0$. Тогда $-\langle c(v), u \rangle + I(u) \geq -\langle c(v), v \rangle + I(v)$, $u \in U \Rightarrow$

$$I(u)-I(v) \ge \langle c(v), u-v \rangle \implies c(v) \in \partial I(v) \ne \emptyset.$$

Теорема доказана.