

# Применение уксусной ""слоты







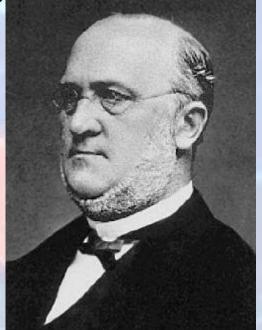


12 мл 2,5 ч л



88 мл 6 ст л




ПРОИЗВОДСТВО УКСУСНОЙ В 1847 году немецкий химик Адольф Кольбе впервые синтезировал уксусную кислоту из неорганических материалов.

Последовательность превращений включала в себя:

Хлорирование сероуглерода до тетрахлорметана с последующим пиролизом до тетрахлорэтилена.

Дальнейшее хлорирование в воде привело к трихлоруксусной кислоте, которая после электролитического восстановления превратилась в уксусную кислоту.





## Производство уксусной

#### **КИСЛОТЫ**

В конце XIX — начале XX века большую часть уксусной

кислоты получали перегонкой 🛚

древесины. Основным

производителем уксусной

кислоты являлась Германия. В Уксусная кислота

сухой перегонке древесины (берёза сосна) Уголь древесный

Углекислый газ

Окись углерода

Метан

Непредельные углеводороды

Выходы важнейших продуктов при



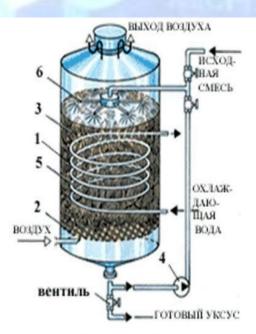


#### Производство уксусной кислоты

#### Окислительные методы

Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.

- Ацетальдегид окислялся в присутствии ацетата марганца (II) при повышенной температуре и давлении. Выход уксусной кислоты составлял около 95 %.
- Окисление н-бутана проводилось при температуре 150—200°С и давлении 150 атм. Катализатором этого процесса являлся ацетат кобальта.


## Производство уксусной кислоты

### Биохимические методы

Уксуснокислое брожение. В качестве сырья используются этанолсодержащие жидкости (вино, забродившие соки), а также кислород. В качестве вспомогательных веществ — ферменты уксуснокислых бактерий или грибков (дрожжи). В этом процессе этанол биокаталитически окисляется до уксусной кислоты

### Производство уксусной

В настоящее время на подавляющем большинстве предприятий производство уксуса ведут циркуляционным способом Фрингса.



• Рис. 2. Аппарат Фрингса: 1 — корпус; 2 — ложное перфорированное днище; 3 — слой буковых стружек; 4 — циркуляционный насос; 5 — змеевик системы термостатирования; 6 — распределительное устройство стружек.

Объем заполненной стружками рабочей камеры достигает 60 м3. В такой аппарат через специальную распределительную систему подают 10%-ный раствор спирта.

При помощи насоса раствор многократно циркулирует через аппарат до тех пор, пока весь спирт не окислится и не образуется 9%-ный раствор кислоты.

Около 10% исходного чистого спирта в этом процессе теряется. Цикл длится 5-6 дней, после чего

