Лекция 4 Тема: Количественные методы педагогического исследования

1.Что понимается под «количественными методами психолого-педагогического исследования»?

Какие количественные методы применяются в психолого-педагогическом исследовании?

Количественные методы педагогического исследования - это способы установления количественных показателей проявления изучаемых явлений, количественных зависимостей между изучаемыми психолого-педагогическими явлениями (В.И. Загвязинский).

Количественные методы педагогического исследования

Методы математической обработки данных исследования

Методы статистической обработки данных исследования

2. Какие методы математической обработки данных применяются в педагогическом исследовании?

Шкалирование - введение цифровых показателей в оценку отдельных сторон психолого-педагогических явлений.

Шкала проявления отношения к труду у детей

4 (балла)	3 (балла)	2 (балла)	1 (балл)
C	Иногда	Часто	Выполняет
интересом	отвлека-	отвлека-	задание
выполняет	ется от	ется от	только при
все	выпол-	выпол-	постоянном
задания.	нения	нения	контроле
	задания.	задания.	учителя.

Регистрация — метод выявления наличия определенных качеств у испытуемых и подсчета тех, у кого данное качество имеется или отсутствует.

Регистрация отношения к труду у детей

Ф.И.О. ребенка	Проявление трудолюбия
1. Лиза В.	С интересом выполняет все задания
2. Артем Н.	Иногда отвлекается от выполнения задания
3. Полина С.	Часто отвлекается от выполнения задания
4. Максим Т.	Выполняет задание только при постоянном контроле учителя

Ранжирование - метод расположения собранных данных в определенной (обычно последовательности порядке убывания или нарастания каких-либо показателей) определение места в этом каждого из исследуемых.

Ранжирование отношения к труду у детей

Ф.И.О. ребенка	Количественный показатель проявления трудолюбия
1. Лиза В. 2. Артем Н. 3. Полина С. 4. Максим Т.	4 3 2 1

3. Какие методы статистической обработки данных используются в психолого-педагогическом исследовании?

Методы статистической обработки результатов исследования - это математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе исследования, можно обобщать, приводить в систему, выявляя скрытые в них закономерности (Р.С. Немов).

Первичные - методы, с помощью которых можно получить показатели, непосредственно отражающие результаты производимых измерений.

Вторичные - методы, с помощью которых на базе первичных данных выявляют скрытые в них статистические закономерности.

4. Какие методы первичной статистической обработки данных используются в психолого-педагогическом исследовании?

Первичные методы статистической обработки результатов исследования

Определение выборочной средней величины

Определение выборочной дисперсии

Определение выборочной моды

Определение выборочной медианы

Параметры распределения - это его числовые характеристики, указывающие, где «в среднем» располагаются значения признака, насколько эти значения изменчивы и наблюдается ли преимущественное появление определенных значений признака.

Параметры распределения

Меры центральной тенденции

Меры изменчивости

Меры центральной тенденции - это число, характеризующее выборку по уровню выраженности измеренного признака (Е.В. Сидоренко).

Меры изменчивости применяются для численного выражения величины межиндивидуальной вариации признака.

Методы определения мер центральной тенденции

выборочное среднее значение

мода

медиана

Выборочное среднее значение средняя оценка изучаемой в эксперименте стороны в развитии личности.

Эта оценка характеризует степень ее развития в целом у группы испытуемых.

Выборочное среднее значение -

$$\frac{1}{x} = \frac{1}{n} \sum_{k-1}^{n} x_k$$

 $oldsymbol{\chi}$ - выборочная средняя величина по выборке

П- количество испытуемых в выборке или частных диагностических показателей

Выборочное среднее значение -

$$\frac{1}{x} = \frac{1}{n} \sum_{k-1}^{n} x_k$$

 χ_k - частные значения показателей у отдельных испытуемых

- знак суммирования величин переменных, находящихся справа от этого знака

Пример расчета выборочного среднего значения

$$x_{1} = 5, x_{2} = 4, x_{3} = 5, x_{4} = 6, x_{5} = 7, x_{6} = 3, x_{7} = 6, x_{8} = 2, x_{9} = 8, x_{10} = 4.$$

Следовательно, n = 10, a индекс k в приведенной формуле меняет свои значения от 1 до 10.

$$\frac{1}{x} = \frac{1}{10} \sum_{k=1}^{10} x_k = \frac{50}{10} = 5,0$$

Медиана - значение изучаемого признака, которое делит выборку, упорядоченную по величине данного признака, пополам.

Пример расчета медианы:

Для выборки 2, 3, 4, 4, <u>5</u>, 6, 7, 8, 9 медианой будет значение 5.

Для ряда 0, 1, 1, 2, <u>3, 4</u>, 5, 5, 6, 7 медиана будет равна 3,5.

Мода - количественное значение исследуемого признака, часто встречающееся в выборке.

Пример расчета моды:

Последовательность значений признаков - 1, 2, 5, 2, 4, 2, 6, 7, 2.

Модой является значение 2.

Дисперсия – отклонение частных значений от средней величины в данной выборке.

Вычисление дисперсии

$$S = \frac{1}{n} \sum_{k=1}^{n} (x_k - x)^2$$

$$\sum_{k=1}^{n} (x_k - x_k)^2$$
 вычислить разности между частными и средними значениями, возвести эти разности в квадрат и просуммировать

Пример расчета дисперсии:

$$\overline{S}_{1}^{2} = \frac{1}{10} \sum_{k=1}^{10} (x_{k} - \overline{x})^{2} = \frac{30}{10} = 3,0$$

$$\overline{S}^{2}_{2} = \frac{1}{10} \sum_{k=1}^{10} (x_{k} - \overline{x})^{2} = \frac{4}{10} = 0,4$$

4. Какие методы вторичной статистической обработки данных используются в психолого-педагогическом исследовании?

Параметрические

Непараметрические

t – критерий Стъюдента

критерий **Фишера**

t – критерий Стъюдента сравнение выборочных средних величин, принадлежащих к двум совокупностям данных, определение наличия или отсутствия статистически достоверного отличия средних значений.

t – критерий Стьюдента

$$\mathbf{t} = \frac{|x_1 - x_2|}{\sqrt{m_1^2 + m_2^2}}$$

 $\chi_{\rm другой \ выборке \ данных}^{\ \ 2}$ – среднее значение переменной по

t – критерий Стъюдента

$$\mathbf{t} = \frac{|x_1 - x_2|}{\sqrt{m_1^2 + m_2^2}}$$

та и та – интегрированные показатели отклонений частных значений из двух сравниваемых выборок от соответствующих им средних величин.

t – критерий Стъюдента

$$\mathbf{t}-\mathbf{критерий}$$
 Стъюдент $\mathbf{t}=\frac{\left|\overline{x_1}-\overline{x_2}\right|}{\sqrt{m_1^2+m_2^2}}$ $\mathbf{m_1}^2=\frac{\overline{S_1^2}}{n_1}$ $\mathbf{m_2}^2=\frac{\overline{S_2^2}}{n_2}$ \mathbf{n}_1- число частных значений пере

п, – число частных значений переменной в первой выборке n, - число частных значений переменной по второй выборке

n₁+n₂-2 – число степеней свободы

Пример расчета t – критерия Стъюдента

Выборки экспериментальных данных:

$$\overline{S}_{1}$$
= 2,49 \overline{S}_{2} = 2,36

$$\mathbf{t} = \frac{|3,2-4,2|}{\sqrt{\frac{2,49}{10} + \frac{2,36}{10}}} = 1,43$$

Пример расчета t – критерия Стъюдента

Выборки экспериментальных данных:

2, 4, 5, 3, 2, 1, 3, 2, 6, 4 и 4, 5, 6, 4, 4, 3, 5, 2, 2, 7.

Значение t должно быть не меньше чем 2,10. У нас показатель оказался равным 1,43, т.е. меньше табличного.

Следовательно, гипотеза о том, что выборочные средние, равные 3,2 и 4,2, статистически достоверно отличаются друг от друга, не подтвердилась.

Критерий Фишера

$$F(n_1-1, n_2-1) = \frac{\overline{S_1^2}}{\overline{S_2^2}}$$

n₁ - количество значения признака в первой выборке

n₂ - количество значений признака во второй выборке

 $(n_1 - 1, n_2 - 1)$ – число степеней свободы

 $\overline{S_1^2}$ — дисперсия по первой выборке

 S_2^2 – дисперсия по второй выборке

Пример расчета критерия Фишера

Выборки экспериментальных данных:

Средние значения для двух этих рядов соответственно равны: 5,0 и 4,5.

$$\overline{S}$$
1= 1,5

$$F(n_1 - 1, n_2 - 1) = {1.5 \over 5.25} = 3.5$$

Пример расчета критерия Фишера

Выборки экспериментальных данных:

$$4, 6, 5, 7, 3, 4, 5, 6.$$

$$2, 7, 3, 6, 1, 8, 4, 5.$$

$$F(n_1 - 1, n_2 - 1) = \frac{5,25}{1,5 = 3,5}$$

$$3.5 > 3.44$$

3,5>3,44

Вывод: дисперсии двух сопоставляемых выборок действительно отличаются друг от друга на уровне значимости с вероятностью допустимой ошибки не более 0,05%.

Непараметрические методы:

χ²- критерий («хи-квадрат критерий»)

$$\chi^{2} = \sum_{k=1}^{m} \frac{(V_{k} - P_{k})^{2}}{P_{k}}$$

Р_k – частоты результатов наблюдений до эксперимента

 V_k — частоты результатов наблюдений, сделанных <u>после эксперимента</u>

m - общее число групп, на которые разделились результаты наблюдений

Пример расчета χ²- критерия

 P_k принимает следующие значения: 30%, 30%, 40%,

 V_k – такие значения: 10%, 45%, 45%.

$$\chi^{2} = \frac{(10-30)^{2}}{30} + \frac{(45-30)^{2}}{30} + \frac{(45-40)^{2}}{40} = 21,5$$

Пример расчета χ^2 - критерия

 $\chi^2 = 21,5 > 13,82$ при вероятности допустимой ошибки меньше чем 0,001.

Следовательно, гипотеза о значимых изменениях, которые произошли в воспитании учащихся в результате введения новой технологии воспитания, экспериментально подтвердилась.

Метод корреляций - метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных.

Коэффициент линейной корреляции

$$\mathbf{r}_{\mathbf{x}\mathbf{y}} = \frac{\sum_{i=1}^{n} \left[(x_i - \overline{x})(y_i - \overline{y}) \right]}{n * \sqrt{S_x^2 * \overline{S_y^2}}}$$

r_x - коэффициент линейной корреляции

х у - средние выборочные значения сравниваемых величин

 $x_{1,} y_{1}$ - частные выборочные значения сравниваемых величин

Коэффициент линейной корреляции

$$\mathbf{r}_{\mathbf{x}\mathbf{y}} = \frac{\sum_{i=1}^{n} \left[(x_i - \overline{x})(y_i - \overline{y}) \right]}{n * \sqrt{S_x^2 * \overline{S_y^2}}}$$

n - общее число величин в сравниваемых рядах показателей

 \overline{S}_{x}^{2} , \overline{S}_{y}^{2} - дисперсии сравниваемых величин от средних значений.

Коэффициент линейной корреляции

2, 4, 4, 5, 3, 6, 8 u 2, 5, 4, 6, 2, 5, 7.

Средние значения этих двух рядов соответственно равны 4,6 и 4,4.

$$\frac{\overline{S}_{x^2=3,4}}{S_{y^2=3,1}}$$
 $r_{xy}=0,92$

Следовательно, между рядами данных существует значимая связь, так как коэффициент корреляции близок к единице.

Коэффициент ранговой корреляции – установление связи между качественно различными признаками.

$$\mathbf{R_{s}} = 1 - \frac{6\sum_{i=1}^{n} d_{i}^{2}}{n^{3} - n}$$

R_s - коэффициент ранговой корреляции по Спирмену;

d_i - разница между рангами показателей одних и тех же испытуемых в упорядоченных рядах;

n - число испытуемых или цифровых данных (рангов) в коррелируемых рядах.

Коэффициент ранговой корреляции:

- если абсолютная величина коэффициента корреляции R_s $0 \le |R_s| < 0,3$, то между коррелируемыми признаками имеется слабая связь;

если 0,3
$$\leq |R_s|$$
 <0,5 — умеренная связь; если 0,5 $\leq |R_s|$ <0,7 — значительная связь; если 0,7 $\leq |R_s|$ — 0,9 — сильная связь; если 0,9 $\leq |R_s| \geq$ 1 — очень сильная связь.

№ п\ п	Учащиеся	Ранг по первом у приз- наку	Ранг по втором у приз- наку	Разность рангов- d _i	di^2
1.	Лиза И.	3	2	1	1
2.	Алина К.	7	3	4	16
3	Артем В.	2	15	-13	169
	И т.д.				

2,4 2,5 3,0 3,2 4,0 4,1 4,2 4,6 4,8 5,0 - упорядоченные исходные данные по второму ряду;

1 2 3 4 5 6 7 8 9 10 - ранговые места по второму ряду.

2 2 4 5 6 7 7 8 8 9 упорядоченные исходные данные по первому ряду;

1,5 1,5 3 4 5 6,5 6,5 8,5 8,5 10 - ранговые места по первому ряду.

5, 6, 7, 8, 2, 4, 8, 7, 2, 9

3,2; 4,0; 4,1; 4,2; 2,5; 5,0; 3,0; 4,8; 4,6; 2,4.

т_{ху} 0, 97- между данными рядами существует статистически достоверная связь