Построение интервального вариационного ряда и гистограммы частот

Соискатель, студент группы ЗПС – 00 Руководитель канд. техн. наук, доцент

Иванов И. П. Гусаров А. В.

Исходные данные

Таблица 1.1 – Исходные эмпирические данные

№ п/п	χ_i
1	1993
2	2037
3	2097
5 6	2101
5	2107
	2118
7	2161
8	2195
9	2232
10	2376
11	2463
12	2518
13	2575
14	2722
15	2726
16	1395
17	1448
18	1497
19	1511
20	1715
21	1788
22	1870
23	1880
24	1893
25	1894

Выражения, по которым выполняются расчеты

Размах варьирования R определяется из выражения

$$R = x_{\text{max}} - x_{\text{min}}. \tag{1.1}$$

Ширину частичных интервалов h определяют из выражения

$$h = \frac{R}{k}. ag{1.2}$$

Количество частичных интервалов k определяется с помощью формулы Γ . Стержеса (Старжеса):

$$k = 1 + 3.32 \cdot \lg n \tag{1.3}$$

Нижняя граница первого интервала $x_{\rm H\, I}$ определяется из выражения

$$x_{\rm H1} = x_{\rm min} - \frac{1}{2} \cdot h \,. \tag{1.4}$$

Последующие значения верхних $\left|x_{\mathrm{B}i}\right|$ и нижних $\left|x_{\mathrm{H}i}\right|$ границ интервалов получают из выражений

$$x_{\text{B}i} = x_{\text{H}i+1} = x_{\text{H}i} + h, \quad \text{где } i = 1, 2, \dots, k-1.$$
 (1.5)

Для последнего k -го интервала выражение (1.5) примет вид

$$x_{\mathrm{B}i} = x_{\mathrm{H}i} + h, \quad \mathrm{где} \, i = k. \tag{1.6}$$

Построение шкалы интервалов на основе вычисления границ интервалов продолжается до тех пор, пока величина $x_{\mathrm{B}i}$ удовлетворяет соотношению

$$x_{\mathrm{B}i} \le x_{\mathrm{max}} + \frac{1}{2} \cdot h. \tag{1.10}$$

Проверка правильности выполнения соотношения (сумма частот должна совпадать с объёмом выборки) проводится путем проверки отношения

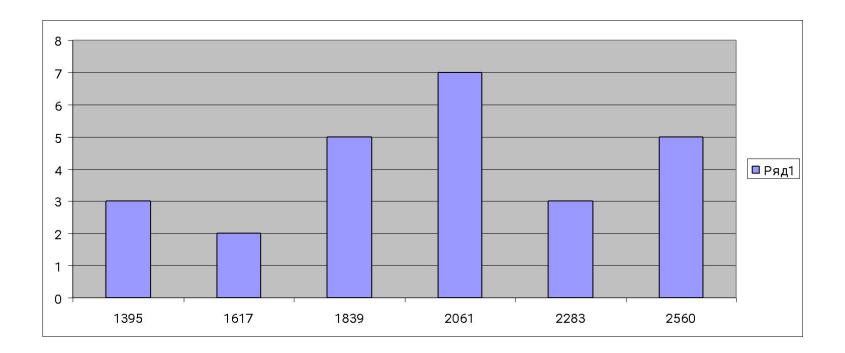
$$\sum_{i=1}^{k} n_i = n. \tag{1.11}$$

Для любого i -го интервала (i меняется от 1 до k) выражение для расчета значения середины частичных интервалов имеет вид

$$x_{\text{cp},i} = x_{\text{H}i} + \frac{h}{2}.$$
 (1.12)

.

Результаты расчетов


Таблица 1.2 – Границы интервалов для получения интервального вариационного ряда

Номер интервала	1	2	3	4	5	6
Диапазон значений, попадающих в интервал k	[1284;1506)	[1506;1728)	[1728;1950)	[1950;2172)	[2172;2394)	[2394; 2726)
Суммарная частота вариант, попавших в интервал k	3	2	5	7	3	5

Таблица 1.3 – Таблица данных для построения гистограммы

Номер интервала	1	2	3	4	5	6
Значение середины <i>i-</i> го частичного интервала	1395	1617	1839	2061	2283	2560
Суммарная частота вариант, попавших в интервал k	3	2	5	7	3	5

Гистограмма частот

Выводы

В результате выполнения работы были получены следующие результаты:

- ранжированы результаты измерений получен вариационный ряд;
- определено число групп (6 частичных интервалов) по формуле Старжеса;
- найдена длина частичного интервала и границы каждого интервала;
- результаты измерений были распределены на 6 групп.

По полученным результатам построена гистограмма.