

Основное состояние

Возбужденное состояние

1s²2s²2p²

1s²2s¹2p³

Степени окисления: -4, 0, +2, +4.

Аллотропные модификации углерода

Получение углерода

При разложении древесины без доступа воздуха и при обугливании органических соединений образуется углерод (сажа).

конц.Н2SO4

 $C6H_{12}O6 = 6C + 6H_{2}O$

Химические свойства углерода свойства окислителя

1) с металлами образует карбиды

Из карбида алюминия получают метан

$$AI_4C_3 + 12H_2O = 4AI(OH)_3 + 3CH_4$$

Из карбида кальция получают ацетилен

$$CaC2 + 2H2O = Ca(OH)2 + C2H2$$

2) с водородом

$$C + 2H2 = CH4$$
 метан (при нагревании)

Химические свойства углерода свойства восстановителя

3) горит в кислороде с выделением большого количества тепла $2C + O_2 = 2CO + Q$

$$C + O_2 = CO_2 + Q$$

4) с хлором
$$C + 2Cl_2 = CCl_4$$

четыреххлористый углерод

5) с серой
$$C + 2S = CS_2$$
 сероуглерод

6) восстанавливает металлы из их оксидов

$$CuO + C = CO + Cu$$

7)
$$C + H_2O = CO + H_2 - Q$$

кокс пар водяной газ

Химические свойства углерода

Применение углерода

крем обуви

адсорбент

типография

сталь

ювелирные изделия

медицина

резина

Метан СН4

Болотный или рудничный газ В угольных бассейнах при добыче угля метан накапливается.

Газ без цвета и запаха Нерастворим в воде Легче воздуха При взрыве метана происходят аварии на шахтах.

CH4 + 2O2 = CO2 + 2H2O

CO	C = O	CO ₂	O = C = O
Оксид углерода (II) Монооксид углерода Угарный газ		Оксид углерода (IV) Диоксид углерода Углекислый газ	
	Газ ь, без запаха	без ці	Газ вета, без запаха
Легче	воздуха	ккТ	келее воздуха
Плохо растворяется в воде		Расте	воряется в воде
Трудно сжижается		Лег	ко сжижается
		Затверде	вает в «сухой лед»
Ядовит, вызывает удушье			Не ядовит

	CO	CO ₂
характер	несолеобразующий CO + H₂O = CO + NaOH =	$KUCЛОТНЫЙ$ $CO_2 + H_2O \implies H_2CO_3$ $CO_2 + 2 NaOH = Na_2CO_3 + H_2O$ $CO_2 + CaO = CaCO_3$
кач. реакция		$CO_2 + Ca(OH)_2 = CaCO_3 + \downarrow H_2O$ известковая вода мутнеет
окислит восстан. свойства	ВОССТАНОВИТЕЛЬ И ОКИСЛИТЕЛЬ 3 CO + Fe ₂ O ₃ = 2 Fe + 3 CO ₂ CO + Mg = MgO + C 2 CO + O_2 = 2 O_2	окислитель CO ₂ + 2 Mg = 2 MgO + C
получение	в промышленности: C + CO ₂ = 2 CO в лаборатории: из муравьиной кислоты	
примене- ние	в металлургии	«сухой лед», газированные напитки, тушение пожаров

Угольная кислота

H₂CO₃ – очень слабая и неустойчивая кислота, разлагается при кипячении.

Диссоциация:
$$_{2}^{2}CO_{3} \rightleftharpoons H+ + HCO_{3}^{2}$$
 - $_{1}^{2}CO_{3}^{2}$ - $_{2}^{2}CO_{3}^{2}$ - $_{2}^{2}CO_{3}^{2}$

Получение:

1) растворением СО, в воде

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

2) из солей под действием сильных кислот

Химические свойства:

Соли угольной кислоты

Соли: средние – карбонаты Na2CO3, CaCO3 и кислые – гидрокарбонаты NaHCO3, Ca(HCO3)2

1) разлагаются при нагревании: $CaCO_3 = CaO + CO_2$

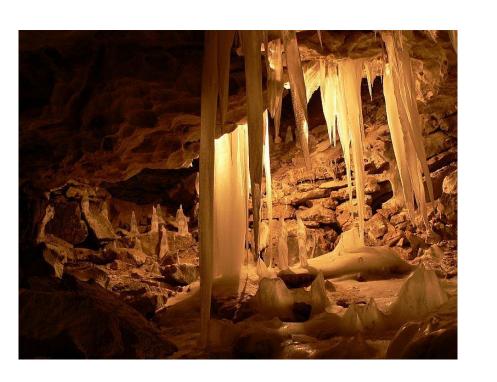
$$2 \text{ KHCO}_3 = \text{K}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$$

2) При пропускании углекислого газа через раствор карбоната:

$$K_{2}CO_{3} + H_{2}O + CO_{2} = 2 KHCO_{3}$$

3) Взаимодействуют с кислотами: $K_2CO_3 + 2 HCl = 2 KCl + H_2O + CO_2$

$$KHCO_{3} + HCI = KCI + H_{2}O + CO_{2}$$


4) Взаимодействуют с другими солями

Качественная реакция на карбонат-ион

$$K_2CO_3 + CaCl_2 = 2 KCl + CaCO_3 белый$$

Карбонаты и гидрокарбонаты легко превращаются друг в друга.

При этом в природе образуются причудливые сталактиты и сталагмиты.

$$CaCO3 + CO2 + H2O = Ca(HCO3)2$$

$$Ca(HCO3)2 = CaCO3 + CO2 + H2O$$

Соли угольной кислоты

Гидрокарбонат натрия – NaHCO₃, питьевая, или пищевая сода

Добавляется в кондитерские изделия, чтобы они были рыхлыми и пышными, и используется в медицине для полоскания горла, для снижения кислотности желудочного сока

Карбонат натрия - Na₂CO₃ – стиральная, или кальцинированная

Применяется в производстве стекла, бумаги, мыла и даже в качестве моющего средства.

Соли угольной кислоты

Карбонат калия - К СО – поташ

Применяется в производстве тугоплавкого стекла, жидкого мыла.

Карбонат кальция - CaCO₃ – мел, мрамор, известняк

Минералы широко используются в строительстве, искусстве, производстве стекла, цемента, бумаги, резины, зубных паст.

Гидроксокарбонат меди (II) - (CuOH)₂CO₃ – малахит Вещество, из которого состоит знаменитый минерал,

Вещество, из которого состоит знаменитый минерал, поделочный камень, описанный Бажовым в его сказках.

 2. Формула высшего оксида RO не характерна для А) Цинка. В) Бериллия. С) Кальция. D) Углерода. E) Бария. 	Высший оксид углерода – CO ₂ Ответ: D.
 2. Формула гидроксида, соответствующая высшему оксиду элемента №6 A) H₂ЭО₃ B) H₂Э C) Э(ОН)₄ D) Э(ОН)₆ E) H₂ЭО₄ 	Высший оксид ЭО2 - СО2, гидроксид H2ЭО3 - H2СО3 Ответ: А
 Аллотропные видоизменения А) Алмаз и графит В) Вода и водород Кислород и водород Дейтерий и озон Водород и дейтерий 	Ответ: А

14. Углерод будет окислителем при взаимодействии с веществами

группы

A) O₂, H₂, CuO

B) H₂, Fe, Si

C) O₂, Fe, Cl₂

D) O2, CaO, Br2

E) H₂, Al, F₂

1. Смесь газов: сернистый, углекислый, угарный и хлор - пропустили через концентрированный раствор гидроксида патрия. Газ, обнаруженный на выходе, имеет молекулярную массу

A) 28

B) 46

C) 64

D) 44

E) 71

С раствором NaOH не прореагировал угарный газ CO. Mr (CO) = 28

Ответ: В.

Ответ: А

5. При сильном прокаливании известняка выделяется

А) углекислый газ

В) угарный газ

С) кислород

D) углерод

Е) водород

CaCO3 = CaO + CO2

Ответ: А.

- 3. Кислые соли угольной кислоты называются
 - А) Гидроксокарбонаты
 - В) Карбонилы
 - С) Гидрокарбонаты
 - D) Карбиды
 - Е) Карбонаты

Средние соли – карбонаты, кислые соли - гидрокарбонаты

Ответ: С.

- 3. Карбонат ионы можно обнаружить водным раствором
- А) Сульфата натрия
- В) Гидроксида натрия
- С) Хлорида натрия
- D) Сульфата калия
- Е) Хлороводорода

Водный раствор

хлороводорода – соляная кислота.

HCK H+ + CI -

CO3 2- + H ← H2O + CO2

5. Различить растворы, содержащие Na₂CO₃ и NaHCO₃ можно Ответ: Е.

- А) нагреванием
- В) добавлением НСІ
- С) добавлением СаСІ2
- D) добавлением HNO₃
- Е) добавлением Н₂СО₃

 $Na_2CO_3 + CaCl_2 =$

²NaCl + CaCO₃ белый

осадок

Ответ: С

- 2. Карбонатная жесткость обусловлена присутствием в воде солей
 - А) Сульфатов кальция и магния
 - В) Хлоридов кальция и магния
 - С) Гидрокарбонатов натрия и калия
 - D) Хлоридов калия и натрия
 - Е) Гидрокарбонатов кальция и магния

Карбонатная жесткость обусловлена присутствием гидрокарбонатами кальция и магния

Ответ: Е

- 5. CaO $\xrightarrow{1}$ Ca(OH)₂ $\xrightarrow{2}$ CaCO₃ $\xrightarrow{3}$ Ca(HCO₃)₂ $\xrightarrow{4}$ CaCO₃ $\xrightarrow{5}$ CaO Номер реакции, с помощью которой уменьшают жесткость воды
 - A) 1
 - B) 2
 - C) 3
 - D) 4
 - E) 5

Ответ: D

14. Сумма всех коэффициентов в полном ионном уравнении взаимодействия оксида углерода (IV) и гидроксида калия (образуется средняя соль) Ответ: D. A) 5 B) 6 C) 7 D) 9 E) 8 11. Сумма коэффициентов в сокращенном ионном уравнении взаимодействия оксида углерода (IV) с гидроксидом натрия (образуется средняя соль) A) 3 Ответ: B) 5 В. C) 9 D) 7 E) 4 $CO_2 + 2KOH = K_2CO_3 + H_2O$ $CO_2 + 2K + 2OH - = 2K + CO_32 - + H_2O$ (9) $CO_2 + 2OH_2 = CO_32 + H_2O_3$ (5)

- 5. При сжигании углерода количеством вещества 0,2 моль образуется углекислый газ объемом (н.у.)
 - А) 2 л
 - В) 0,2 л
 - С) 2,24 л
 - D) 4,48 л
 - Е) 0,448 л

ΧЛ

$$C + O2 = CO2$$

1 моль

22,4 л

$$X = \frac{0.2 * 22.4}{1} = 4.48 \ \pi$$

Ответ: D.

15. Обьем оксида углерода (IV) (н.у.), выделяющийся при сгорании

96 г сажи

А) 180 л

В) 165 л

С) 189 л

D) 170 л

Е) 179,2 л

96 r
$$\times \pi$$

C + O₂ = CO₂

12 r 22,4 π

$$X = \frac{96 * 22,4}{12} = 179,2 \, \pi$$

Ответ: Е.

- 10. Если при сгорании 1 моль углерода выделяется 402 кДж теплоты, то при сгорании 4 моль углерода выделится
 - А) 100,5 кДж
 - В) 1608 кДж
 - С) 804 кДж
 - D) 1206 кДж
 - Е) 402 кДж

4 моль

х кДж

$$C + O2 = CO2 + 402 кДж$$

1 моль

$$X = \frac{4*402}{1} = 1608 кДж$$
 Ответ: В.

13. Объем NO₂ (н.у.), который выделяется при взаимодействии 24г углерода с избытком конц HNO₃.

А) 22,4 л

В) 112 л

С) 179,2 л

D) 89, 6

Е) 44,8 л

24 r $\times \pi$ $C + 4HNO_3 = CO_2 + 4NO_2 + 2H_2O$

12 г 4*22,4 л

 $X = \frac{24*4*22,4}{12} = \underline{179,2}$ **Ответ: С.**

15. Масса (г) карбоната кальция, израсходованного для получения 44,8 л углекислого газа (н.у.) равна

- А) 100 г
- B) 150 r
- С) 300 г
- D) 400 г
- Е) 200 г

$$X = \frac{100*44.8}{22.4} = 200 \, \Gamma$$
 OTBET: E.

15. При разложении 25 г технического известняка получили 4,48 л (н.у.) углекислого газа. Массовая доля примеси равна

- A) 12,2 %
- B) 15,5 %
- C) 20 %
- D) 40 %
- E) 41,3 %

$$_{3}^{\text{Y}}$$
 CaCO₃ = CaO + CO₂

$$X = \frac{100*4,48}{22.4} = 20 \Gamma$$
 (4.B.)

W(прим.)=
$$\frac{\text{m(прим.)}}{\text{m(изв.)}} * 100% = $\frac{5 \Gamma}{25 \Gamma} * 100\% = \frac{20\%}{20\%}$$$

Ответ: С.

14. На мрамор массой 40 г, воздействовали избытком соляной кислоты. Выделился газ объемом (н.у.)

- А) 4,56 л
- В) 8,96 л
- C) 3,36 л D) 5,56 л
 - Е) 12,34 л

_ 40 г ΧЛ

 $CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2$

100 г 22,4 л

 $X = \frac{40*22,4}{122} = 8,96$ π Ответ: В.

- 13. Определите среду реакции, если через раствор, содержащий 0,8 моль гидроксида натрия пропустили 6,72 л (н.у.) углекислого газа.
 - А) кислая
 - В) индеферентная
 - С) щелочная
 - D) нейтральная
 - Е) слабокислая

Решение без расчетов.

Возможно образование солей: Na₂CO_{3 или} NaHCO₃

В обоих случаях среда растворов солей щелочная. **Ответ: С.**

14. Объем газа (н.у.), полученный сжиганием 4,48 л (н.у.) угарного газа в 2,24 л кислорода

- А) 22,4 л
- В) 44,8 л
- С) 11,2 л
 - D) 4,48 л
 - Е) 0,224 л

$$2CO + O_2 = 2CO_2$$

$$X = 4,48$$
л **ОТВЕТ: D.**

22. Сумма молярных масс (г\моль) углеродсодержащих веществ X_2 и X_3 в цепочке превращений

$$1$$
моль (CO_2) $\xrightarrow{2 \text{ моль Mg, } t^0} X_1 \xrightarrow{0.5 \text{ моль Ca, } t^0} X_2 \xrightarrow{H_2O, \text{ изб}} X_3$

- A) 56
- B) 112
- C) 90
- D) 52
- E) 84

$$CO_2 + 2Mg = 2MgO + C$$

$$2C + Ca = CaC_2$$

$$CaC_2 + 2H_2O = Ca(OH)_2 + C_2H_2$$

$$Mr(CaC_2) + Mr(C_2H_2) = 64 + 26 = 90$$

Ответ: С.

22. Для определения содержания углекислого газа в воздухе, через раствор гыдроксида кальция пропустили 44,8 л воздуха. Масса осадка составила

10 г. Процент углекислого газа в воздухе

- A) 1 %
- B) 2 %
- C) 4 %
- D) 5 %
- E) 3 %

•
$$X \pi$$
 10 Γ $Ca(OH)_2 + CO_2 = CaCO_3 + H_2O_{22,4 \pi}$ 100 Γ $X = \frac{10*22,4}{100} = 2,24 \pi$ 44,8 $\pi - 100\%$ 2,24 $\pi - y\%$ $y = \frac{100*2,24}{44,8} = 5\%$ OTBET: D.