

Definitions and Terminology

Sergei Parnachov Gary D. Couples Helen Lewis

This Lecture

- **Purpose**: Introduce the crucial basic terminology of Structural Geology
- Outline:
 - Orientation of planes and lines
 - Faults
 - Folds
 - Faults/Fold relationships
 - Fractures
 - Typical Features for shortening/extention environments

Analysis Levels

- shape and body's relations
- Kinematical
 - motions
- Geomechanical
 - stress/strain relations (incl. ductile/brittle type of deformation)

Increasing level of complexity

MSc REM Reservoir Structure ¹/₂ Module

Strike

Rules:

- always measure clockwise,
- may be measured with two results with 180⁰ difference:
 - 35° or 215° both are correct

4

True (Geographical) Strike Direction

Magnetic North Pole

Line Orientation

Magnetic Strike Direction is: $35^{0}-7^{0} = 28^{0}$, so correction $+7^{0}$ has to be made for compass

Orientation of Lines

HERIOT

• More-or-less planar surface along which there has been relative displacement of the two sides?

OR

Process zone (finite thickness) in which fault-rock materials are created and altered?

Faults

⁽Hooper, Hatcher, 1988)

Slip Direction

Strike Slip Direction:

- opposite block moves to the left: Sinistral Strike Slip = «левосторонний сдвиг»
- opposite block moves to the right: *Dextral Strike Slip* = «правосторонний сдвиг»

Naming the Blocks

- Hangingwall = «висячее крыло»
- Footwall = «лежачее крыло»

HERIOT

Recognizing Faults on Structural Maps

Naming the blocks and recognizing fault' types

Kisimbay Oilfield, Western Kazakhstan (Bisengalieva et al., 2002)

Anderson' Faults Concept

σ1 is vertical,σ2 and σ3 are horizontal

 σ 1 and σ 2 are horizontal, while σ 3 is vertical $\sigma 1$ and $\sigma 3$ are horizontal, while $\sigma 2$ is vertical

HERIOT WATT UNIVERSITY

Stress Trajectory Variations

Minimum principal stress ------

in the stress field.

16

HERIOT WATT UNIVERSITY

Fault Sets - Extension

HERIOT

'A

B'

В

Fault Sets - Shortening

What is a fold? And Fold Names

Feature where rock layers or other markers become non-planar due to deformation

20

Crestline and Trough line are the lines of maximum and minimum elevation respectively Hinge Line traces points with maximum curvature (doesn't necessary coincide with Crest/Trough lines) Inflection Line (i) separates adjacent folds and traces area with minimal curvature (points of changing curvature sign) Limb (or Flank) is low-curvature area between hinges (крыло складки) Closure is an hight-curvature area around (or between) hinges (замок складки)

HERIOT

Axial surface (not always plane) connects multiple hinge lines (that is a difference with Russian terminology)

Inflection surface include inflection lines

Fold Names

Measuring Folds

HERIOT

Thickness changes?

Similar Folds are more "popular" in nature: mass flow exist from high-stress areas (limbs) to low-stress (closures)

Class 1B: Parallel fold Class 1A

Class 2: Similar fold

Isogone – line connected points with same dip angle

Class	Dip Isogon Geometry (from convex to concave surface)	Orthogonal Thickness (from hinge to limb)	Axial Trace Thickness (from hinge to limb)
1	Convergent		Increases
1A	Convergent	Increases	Increases
1B	Convergent	Constant	Increases
1C	Convergent	Decreases	Increases
2	Parallel	Decreases	Constant
3	Divergent	Decreases	Decreases

Source: After Ramsay (1967).

Fault-Bend Interaction: Folds

Detached Folds

29

Rollover Structures

HERIOT WATT UNIVERSITY

Rollover Structures

30

Rollover Structures

HERIOT

Rollover Structures

rollover anticline: ductile scenario

Rollover Structures

rollover anticline: brittle scenario, antithetic faults development

antithetic faults

Rollover Structures

rollover anticline: brittle + overlaid

Inversion

Early: extension, with sediments thickening across faults

Later: shortening, re-use of previous faults

Same, Unspecified Scale

Fractures vs Faults: almost invisible (not more then few mm) lateral motion along fracture surface

Fractures $k_f = \frac{a^3}{d} \cdot 8.35 \cdot 10^9$ $\varphi_f = \frac{a}{a+d} \cdot 100$ where k_f = fracture permeability (mD) φ_f = fracture porosity a = fracture aperture (cm) d = fracture spacing (cm)

Some extension (if big enough difference between principle stresses) may exist producing "open" fractures with definite aperture and spacing that, being unfilled by secondary minerals, increase reservoir' permeability greatly – as cube of joint aperture

Fractured Reservoirs (joints only!)

Nelson (1992):

I – essential contribution in reservoir' porosity & permeability; deplete rapidly, basically not economic,

II – essential permeability; matrix porosity support fluid flow to fractures; good reserves,

III – fractures add to reservoir' permeability, improving otherwise poor-quality reservoir,

IV – regular matrix reservoir, where fractures add permeability anysotropy/compartmentalisation.

Fault-Associated Fractures

Fault-Associated Fractures

Fold-Associated Fractures

Fold-Associated Fractures

Scheme described by Stearns, 1968

Classification relates fractures and bedding orientation, plus curvature, with some aspects of a "process model"

Cooling

43

Twiss & Moores, 1992

Magmatic – both plutonic and volcanic - rocks cooling (columnar basalts are good example)

HERIOT WATT UNIVERSITY

High Differential Stress

Fracturing because of general strain (big enough differential stress)

 $S/T \approx 0.7...1.2$

where:

- S fracture spacing,
- T bed thickness

Bekker & Gross, 1992

Tectonic Uplifting

Fracturing because of tectonic uplifting – sure should be initiated by other processes (like cooling)

Twiss & Moores, 1992

46

Natural Hydrofracturing

Natural Hydrofracturing

