
Context Management

© 2004 Microsoft Corporation. All rights reserved. 2

What are Contexts?
■ Minifilter defined memory associated with Filter Manager objects

■ May be from Paged or Non-paged pool
■ Which objects can have contexts:

■ Volume
■ Instance
■ File (not currently supported)
■ Stream
■ StreamHandle (FileObject)

■ Filter Manager tracks when contexts should be deleted:
■ Object deletion
■ Instance detach
■ Filter unload

© 2004 Microsoft Corporation. All rights reserved. 3

Contexts and 3rd party file
systems

■ To support Stream and StreamHandle
contexts a file system must use the
FSRTL_ADVANCED_FCB_HEADER

■ See FsRtlSetupAdvancedHeader() and
FsRtlTeardownPerStreamContexts() in
NTIFS.H

■ Also look at the FastFat source in the IFSKit

■ All Microsoft file systems now use this

© 2004 Microsoft Corporation. All rights reserved. 4

Context Registration
■ Specify an array of FLT_CONTEXT_REGISTRATION structures

in FLT_REGISTRATION structure
■ The order of the entries in this array does not matter

■ At least one registration entry must be specified for each
context type used by the filter

■ CleanupContext() callback is optional
■ 3 different allocation options:

■ Specify 0-3 explicit context sizes (for given context type). System
internally uses Lookaside lists

■ Pool tag must be specified
■ Specify FLT_VARIABLE_SIZED_CONTEXTS, system allocates

directly from pool (may be used in conjunction with explicit sizes)
■ Pool tag must be specified

■ Specify your own allocate/free callback routines

© 2004 Microsoft Corporation. All rights reserved. 5

Creating Contexts
■ Use:

NTSTATUS
FltAllocateContext (
 IN PFLT_FILTER Filter,
 IN FLT_CONTEXT_TYPE ContextType,
 IN SIZE_T ContextSize,
 IN POOL_TYPE PoolType,
 OUT PFLT_CONTEXT *ReturnedContext);

■ Volume contexts must be allocated from non-paged
pool

■ Contexts limited to 64K in size
■ A context size of zero is supported

© 2004 Microsoft Corporation. All rights reserved. 6

Setting contexts
■ Use:

■ FltSetVolumeContext()
■ FltSetInstanceContext()
■ FltSetFileContext()
■ FltSetStreamContext()
■ FltSetStreamHandleContext()

■ Sample:
NTSTATUS
FltSetStreamHandleContext (
 IN PFLT_INSTANCE Instance,
 IN PFILE_OBJECT FileObject,
 IN FLT_SET_CONTEXT_OPERATION Operation,
 IN PFLT_CONTEXT NewContext,
 OUT PFLT_CONTEXT *OldContext OPTIONAL);

■ FLT_SET_CONTEXT_OPERATION values:
■ FLT_SET_CONTEXT_REPLACE_IF_EXISTS

■ If specified, replaced context returned in OldContext parameter (must be dereferenced)
■ FLT_SET_CONTEXT_KEEP_IF_EXISTS

■ If specified, existing context returned in OldContext parameter (must be dereferenced)
■ Can not set contexts at DPC level

© 2004 Microsoft Corporation. All rights reserved. 7

Supports contexts
■ Use:

BOOLEAN
FltSupportsFileContexts (
 IN PFILE_OBJECT FileObject);

BOOLEAN
FltSupportsStreamContexts (
 IN PFILE_OBJECT FileObject);

BOOLEAN
FltSupportsStreamHandleContexts (
 IN PFILE_OBJECT FileObject);

■ Checks to see if contexts are supported on the given FileObject
■ Not supported on paging files
■ Not supported during pre-create
■ Not supported during post-close
■ Not supported during IRP_MJ_NETWORK_QUERY_OPEN
■ FltSupportsFileContexts() currently returns FALSE
■ Not supported on file systems that do not use the FSRTL_ADVANCED_FCB_HEADER

© 2004 Microsoft Corporation. All rights reserved. 8

Getting Contexts

■ Use:
■ FltGetVolumeContext()
■ FltGetInstanceContext()
■ FltGetFileContext()
■ FltGetStreamContext()
■ FltGetStreamHandleContext()

■ Sample:
NTSTATUS
FltGetStreamContext (
 IN PFLT_INSTANCE Instance,
 IN PFILE_OBJECT FileObject,
 OUT PFLT_CONTEXT *Context);

■ Designed to be retrieved during each operation
■ Can not get contexts at DPC level – if a context is needed in a postOperation

callback:
■ Get it during the preOperation callback and pass it to the postOperation callback
■ Do your postOperation processing at non-DPC level

■ Synchronize operation
■ Use FltDoCompletionProcessingWhenSafe()

© 2004 Microsoft Corporation. All rights reserved. 9

Referencing Contexts

■ Use:
VOID
FltReferenceContext(
 IN PFLT_CONTEXT Context);

■ This allows a filter to add their own
reference to a context

■ Call FltReleaseContext() to remove
added reference

© 2004 Microsoft Corporation. All rights reserved. 10

Releasing Contexts
■ Use:

VOID
FltReleaseContext (
 IN PFLT_CONTEXT Context);

■ Contexts need to be released following:
■ Getting (via FltGetXxxContext())
■ Creating (Via FltAllocateContext())
■ Referencing (via FltReferenceContext())
■ A replaced or previous context returned from FltSetXxxContext()

routines
■ Contexts may be held from pre to post operations as well as across

multiple operations
■ They must eventually be released or the memory will be leaked

■ It is OK for a context to point to another context
■ Example: stream context contains a pointer to an instance context

■ Contexts can be released at DPC level

© 2004 Microsoft Corporation. All rights reserved. 11

Multiple contexts
■ Use:

VOID
FltGetContexts (
 IN PFLT_RELATED_OBJECTS FltObjects,
 IN FLT_CONTEXT_TYPE DesiredContexts,
 OUT PFLT_RELATED_CONTEXTS Contexts);

VOID
FltReleaseContexts (
 IN OUT PFLT_RELATED_CONTEXTS Contexts);

© 2004 Microsoft Corporation. All rights reserved. 12

Deleting Contexts
■ Use:

■ FltDeleteContext()
■ FltDeleteVolumeContext()
■ FltDeleteInstanceContext()
■ FltDeleteFileContext()
■ FltDeleteStreamContext()
■ FltDeleteStreamHandleContext()

■ Sample:
VOID
FltDeleteContext (
 IN PFLT_CONTEXT Context);

NTSTATUS
FltDeleteVolumeContext (
 IN PFLT_FILTER Filter,
 IN PFLT_VOLUME Volume,
 OUT PFLT_CONTEXT *OldContext OPTIONAL);

■ Only use if you have an explicit reason to delete an existing context
■ Filter Manager tracks when contexts should be deleted due to objects going away

■ Can not delete contexts at DPC level

© 2004 Microsoft Corporation. All rights reserved. 13

Freeing Contexts
■ Contexts are freed after they are deleted and all outstanding

references have been released
■ PFLT_CONTEXT_CLEANUP_CALLBACK

■ Unique routine defined for each context type at registration time
■ May be NULL if you don’t have any cleanup work to do when

context is freed
■ Called by Filter Manager before context is freed

■ Contexts are cleaned up in the following hierarchical order
■ StreamHandle
■ Stream
■ File (when implemented)
■ Instance
■ Volume

© 2004 Microsoft Corporation. All rights reserved. 14

Example: Setting a stream
context
status = FltAllocateContext(FilterHandle,
 FLT_STREAM_CONTEXT,
 sizeof(NCONTEXT),
 PagedPool,
 &ctx);
if (NT_SUCCESS(status)) {

 /* Initialize Context Here */

 status = FltSetStreamContext(FltObjects->Instance,
 FltObjects->FileObject,
 FLT_KEEP_CONTEXT_IF_EXISTS,
 ctx,
 NULL);

 / * Always release. If set fails it will free it */
 FltReleaseContext(ctx);
}

© 2004 Microsoft Corporation. All rights reserved. 15

Performance Suggestions

■ If a filter only supports one instance per
volume (which most filters do) use
instance contexts instead of volume
contexts

■ Consider putting a pointer to your
instance context inside your stream or
streamhandle contexts

© 2004 Microsoft Corporation. All rights reserved. 16

Sample

■ Look at Ctx minifilter sample

