

Теория электролитической диссоциации Аррениуса пригодна лишь **для водных растворов**, в неводных растворителях она несостоятельна.

Например, **NH**₄**Cl**, ведущий себя как **соль** в **водном раствяри**, **ортрамтющимивы авинку паммиаке** проявляет свойства **кислоты**, растворяя металлы с **протодитическая теория**, позволившая расширить **NN**₄**сс** кислот и оснований. 2NH₄Cl + Ca = 2NH₃ + CaCl₂ + H₂.

Мочевина **CO(NH₂)₂**, растворяясь **в безводной уксусной кислоте**, проявляет свойства **основания**, в **жидком аммиаке** – свойства **кислоты**, а ее **водные** растворы – нейтральны.

Брёнстед

Протолитическая теория кислот и оснований (Теория Бренстеда-Лоури)

Лоури

Основные положения:

1. **Кислота** — молекула или ион, **отдающие Н**⁺ (протон), т.е. донор протонов.

$$HCN \leftrightarrow H^+ + CN^-$$

$$HS^- \leftrightarrow H^+ + S^{2-}$$

Основание присоединяющие протонов.

$$CN^- + H^+ \leftrightarrow HCN$$

$$NH_3 + H^+ \leftrightarrow NH_4^+$$

2. Кислоты и основания существуют только как сопряженные пары.

<u>Сопряженные кислотно-основные пары</u>

Кислота ≒ H⁺ + Сопряженное основание Основание + H⁺ ≒ Сопряженная кислота

Их свойства обусловлены процессом протолиза - обмена протонами.

$$NH_3$$
 + $HCl \leftrightarrows NH_4^+$ + Cl^- основание кислота сопряженная сопряженное кислота основание

Реакция обратима, что приводит всю систему в состояние протолитического равновесия.

Амфолиты (амфотерные вещества) – способны как отдавать, так и принимать протоны, т.е. проявлять как кислотные, так и основные свойства.

Амфолитами являются:

- ✓ гидроксиды (Zn, Al, Pb, Sn, Cr);
- гидроанионы многоосновных кислот $(HCO_3^-, HPO_4^{2-}, H_2PO_4^-);$
- ✓ аминокислоты;
- ✓ вода

Жидкие протонсодержащие растворители вступают в обратимую реакцию **автопротолиза**.

Например, для воды:

$$2H_2O = H_3O^+ + OH^-$$
 или упрощенно $H_2O = H^+ + OH^-$

Состояние равновесия характеризуется **ионным произведением воды К**_w:

$$K_w = [OH^-] \cdot [H^+]$$
 при 25 °C
 $K_w = 10^{-14}$ и

 $[OH^-] = [H^+] = 10^{-7}$ моль/л

Содержание протонов [H⁺] и гидроксид-ионов [OH⁻] удобно выражать через водородный и гидроксидный показатели.

Водородный показатель (рН)

$$pH = -\lg a_{H^+}$$

Гидроксильный показатель (рОН)

$$pOH = -\lg a_{OH^-}$$

Сёрен Педэр Лауриц Сёренсен

Логарифмируя уравнение
$$K_W = [H^+][OH^-] = 10^{-14}$$
, получаем:


$$pH + pOH = 14$$

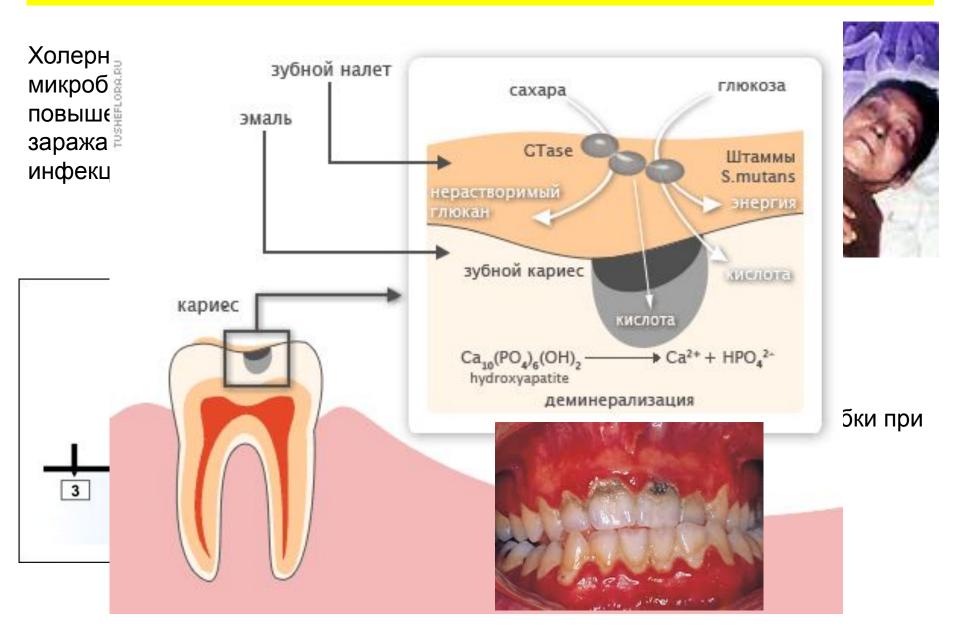
Шкала кислотности воды составляет 14 единиц

ИОННОЕ ПРОИЗВЕДЕНИЕ ВОДЫ (K_w) ПРИ РАЗЛИЧНЫХ ТЕМПЕРАТУРАХ (ПО ЛУРЬЕ)

T,	0	20	25	40	60	80	100
oC							
K	0,11	0,69	10 ⁻¹⁴	2,95	9,55	25,1	55,0
W	·10 ⁻¹⁴	·10 ⁻¹⁴		·10 ⁻¹⁴	·10 ⁻¹⁴	·10 ⁻¹⁴	·10 ⁻¹⁴
рН	7,5	7,1	7	6,8	6,5	6,3	6,1
=							
68 74							

Расчет рН кислот и оснований

Подробно с расчетом рН кислот и оснований вы познакомились на лабораторных занятиях


$$pH = 14 + \lg C_{och}$$

$$pH = 14 + \lg(\alpha \cdot C_{och})$$

$$pH = 14 - \frac{1}{2}(pK_b - \lg C_{och})$$

кислотность БИОЛОГИЧЕСКИХ ЖИДКОСТЕЙ Слюна Кожа pH 6,7 - 7,2 pH 5,5 Межклеточная Плазма крови жидкость рН 6,9 pH 7,35-7,45 Молоко pH 6,6-7,0 Желудочный сок pH 1,2 - 3 Пот pH 6,6 - 7,0Содержимое Секреция кишечника поджелудочной pH 4,8 – 8,2 железы рН 8,6 Стул здоровых Моча людей pH 5,5 – 6,5 pH 5,5

рН сред организма определяет его восприимчивость к инфекционным заболеваниям

Буферные системы

Растворы, способные сохранять значение рН при разбавлении или добавлении <u>небольших</u> количеств кислоты или щелочи.

Классификация БС

- 1. **Кислотные** состоят из слабой кислоты и соли этой кислоты, образованной сильным основанием (CH₃COOH + CH₃COONa) ацетатный буфер
- 2. Основные состоят из слабого основания и соли этого основания, образованной сильной кислотой $(NH_4OH + NH_4Cl)$ аммиачный буфер
- 3. Солевые cocmosm из coneй многоосновных кислот $(Na_2HPO_4 + NaH_2PO_4)$ фосфатный буфер

роль слабого основания роль слабой кислоты

4. Растворы амфолитов (аминокислот, белков)

Механизм поддержания рН

Рассмотрим ацетатный буферный раствор:

$$\begin{array}{c}
\mathbf{CH_3COOH} \longrightarrow \mathbf{CH_3COO}^{-} + \mathbf{H}^{+}; \\
\mathbf{CH_3COONa} \longrightarrow \mathbf{CH_3COO}^{-} + \mathbf{Na}^{+}.
\end{array}$$

+ сильную кислоту (HCl):

$$CH_3COO^- + H^+ \rightarrow CH_3COOH$$

+ щелочь (NaOH):

$$CH_3COOH + OH^- \rightarrow CH_3COO^- + H_2O$$

рН буферных смесей при разных температурах

		Температура °С				
Буферная смесь	10	14	18	22	26	28
Боратная	. 9,30 6,84	9,27 6,83	9,24 6,82	9,21 6,81	9,18 6,80	9,15 6,80

рН буферных систем зависит:

- ✓от величины рК (т.е. от Кдис), а следовательно и от t, т.к. Кдис=f(t);
- ✓ от соотношения концентраций компонентов.

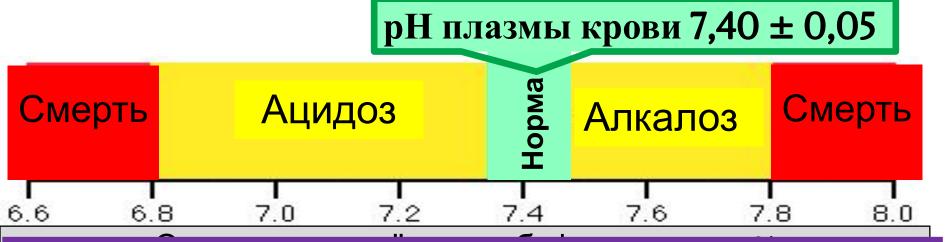
рН буферной системы не зависит от разбавления

Буферная емкость

Способность буферного раствора противодействовать смещению реакции среды при добавлении кислоты или щелочи.

Буферная ёмкость (В) –

количество моль эквивалентов сильной кислоты или щелочи, добавление которой к 1 л буферного раствора изменяет рН на единицу.


$$\mathbf{B}_{\mathbf{a}} = \frac{C_{N(\kappa - ma)} \cdot V_{(\kappa - ma)}}{\Delta p H \cdot V_{\delta y \phi}}$$

[моль/л] или [ммоль/л]

- Буферная ёмкость зависит от:
- 1) природы добавляемых веществ и компонентов буферного раствора.
- 2) исходной концентрации компонентов буферной системы.
 - Чем больше количества компонентов кислотно-основной пары в растворе, тем больше буферная ёмкость этого раствора.
 - 3) соотношения концентраций компонентов буферного раствора, а следовательно и от pH.

- Максимальная буферная емкость, т.е. наибольшая способность этой системы противостоять изменению рН, соответствует значению рН = рК. При этом $C_{\text{сопи}}/C_{\text{к-та}} = 1$.
- Интервал pH = pK ± 1, называется зоной буферного действия системы.
- Это соответствует интервалу соотношения $C_{\text{сопи}}/C_{\text{к-ты}}$ от 1/10 до 10/1.

Механизм действия разбирается на лабораторном занятии

Гемоглобиновый	•	35
Общая емкость	43	57

Кислотно-основное состояние организма (КОС) Показатели КОС (метод микро – Аструп)

В_а - буферная емкость по кислоте: крови — 0,05 моль/л; плазмы — 0,03 моль/л; сыворотки — 0,025 моль/л

рН - концентрация водородных ионов в норме 7,35-7,45

рСО₂ — парциальное давление СО₂ — **в норме 40±5 мм.рт.ст.**

SB — стандартный бикарбонат, содержание НСОз в крови — в норме 24,4±3 ммоль/л

ВВ — содержание буферных оснований в плазме крови — в норме 42±3 ммоль/л

BE — избыток (или дефицит) буферных оснований, показывает изменение BB по сравнению с нормой — в норме ±3 ммоль/л

АЦИДОЗ

уменьшение буферной емкости по кислоте

ДЕКОМПЕНСИРОВАННЫЙ

Ва < норма

рН≈норма рН≈норма

МЕТАБОЛИЧЕСКИЙ

НАКОПЛЕНИЕ НЕЛЕТУЧИХ КИСЛОТ

с(НСО₃-) < норма р(СО2) < норма ВЕ < норма

Причины:

- кислородное голодание тканей;
- нарушение функции почек;
- диарея;
- диабет

Основная причина коматозного состояния — метаболический ацидоз, обусловленный высоким уровнем молочной кислоты (лактоацидоз)

АЦИДОЗ

уменьшение буферной емкости по кислоте

КОМПЕНСИРОВАННЫЙ ДЕКОМПЕНСИРОВАННЫЙ Ва < норма

рН≈норма рН≈норма

УДЦ: действие лекарственных препаратов (опиоиды, снотворные, седативные и т.д.); нарушение мозговою кровообращения, тяжелая черепномозговая травма, острые нейроинфекции, опухоли головного мозга. Для тяжелой формы характерно: нарушение сознания, поверхностное дыхание.

РЕСПИРАТОРНЫЙ

НАКОПЛЕНИЕ ЛЕТУЧЕЙ КИСЛОТЫ (CO_2)

c(HCO₃-) > норма p(CO2) > норма BE > норма

Причины:

- заболевание органов дыхания;
- угнетение дыхательного центра

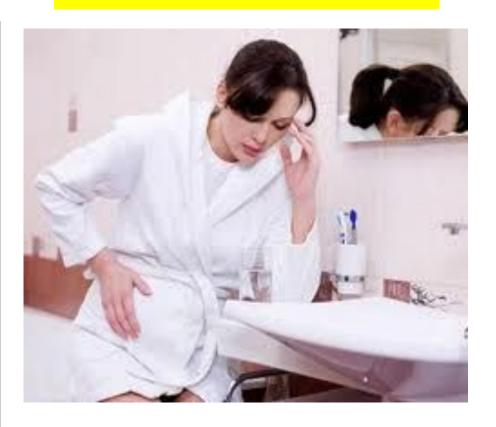
АЛКАЛОЗ увеличение буферной емкости по кислоте

Ва > норма

ТЕКОМПЕНСИРОВАННЫЙ

рН≈ норма рН≈ норма

МЕТАБОЛИЧЕСКИЙ


УДАЛЕНИЕ НЕЛЕТУЧИХ КИСЛОТ ИПИ НАКОПЛЕНИЕ БУФЕРНЫХ ОСНОВАНИЙ

> $c(HCO_3^-) > Hopma$ р(СО2) > норма ВЕ > норма

Причины:

- неукротимая рвота, запор;
- щелочная пища и вода

РЕСПИРАТОРНЫЙ

АЛКАЛОЗ увеличение буферной емкости по кислоте

Ва > норма

ДЕКОМПЕНСИРОВАННЫЙ

рН≈ норма рН≈ норма

РЕСПИРАТОРНЫЙ

УДАЛЕНИЕ ЛЕТУЧЕЙ кислоты (со,)

c(HCO₃⁻) < норма p(CO2) < норма ВЕ < норма

Причины:

- разрежение воздуха;
- гипервентиляция легких;
- чрезмерное возбуждение дыхательного центра

Показатели	Норма	Анализ крови пациента	Диагноз		
В _а (крови) моль/л	0,05	0,03	ацидоз		
рН	7,35 – 7,45	7,3	декомпенсированный		
рСО ₂ мм.рт.ст.	35 – 45	30	метаболически		
ВВ ммоль/л	39 – 45	34			
ВЕ* моль/л	± 3	34–39 = - 5	стресс- нормальное		
Примечание*: значения BE ± (4 – 5) – стресс-нормальное состояние					

КОРРЕКЦИЯ КОС

Поиск и устранение причин:

нарушения процессов дыхания (респираторный ацидоз или алкалоз) или процессов пищеварения и выделения (метаболический ацидоз или алкалоз).

2. При ацидозе:

a) 4,5% NaHCO₃,
$$V = \frac{1}{2}BE \cdot m_{mena}(\kappa \epsilon)$$

$$V=m_{{\it mena}}(\kappa \varepsilon) \cdot t_{{\it ocm.cepdya}}(mu H)$$

- б) лучше:
- 3,66% р-р трисамина или 11% р-р лактата натрия.
- 3. При алкалозе: 5% р-р аскорбиновой кислоты.