
Data Structures &
Algorithms

Adil M. Khan
Professor of Computer Science

Innopolis University

Lecture 4

Recap
• Elementary data structures

• ADT

• Array based vs. linked implementation

• Worst case time complexity to help us choose based
on our needs

Today’s Objectives
• What is a “MAP or Dictionary ADT”?

• What choices do we have to implement a MAP?

• What is a hash function and a hash table?

• What is collision and how to handle it?

• How to analyze time complexity of a Hash Map?

Map or Dictionary

Map or Dictionary
• Models a searchable dynamic set of key-value entries

• Main operations are: searching, inserting, and
deleting items

• Applications:

• Compiler symbol table

• A news indexing service

The Map ADT
• get(k): if the map M has an entry with key k, return its associated value; else,

return null

• put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then
return null; else, return old value associated with k

• remove(k): if the map M has an entry with key k, remove it from M and return
its associated value; else, return null

• size(), isEmpty()

• entrySet(): return an iterable collection of the entries in M

• keySet(): return an iterable collection of the keys in M

• values(): return an iterator of the values in M

Example
Operation Output Map
isEmpty() true Ø
put(5,A) null (5,A)
put(7,B) null (5,A),(7,B)
put(2,C) null (5,A),(7,B),(2,C)
put(8,D) null (5,A),(7,B),(2,C),(8,D)
put(2,E) C (5,A),(7,B),(2,E),(8,D)
get(7) B (5,A),(7,B),(2,E),(8,D)
get(4) null (5,A),(7,B),(2,E),(8,D)
get(2) E (5,A),(7,B),(2,E),(8,D)
size() 4 (5,A),(7,B),(2,E),(8,D)
remove(5) A (7,B),(2,E),(8,D)
remove(2) E (7,B),(8,D)
get(2) null (7,B),(8,D)
isEmpty() false (7,B),(8,D)

© 2014 Goodrich, Tamassia, Goldwasser

A Simple List-Based Map
• We can implement a map using an unsorted list

• We store the items of the map in a list S (based on a
doublylinked list), in arbitrary order

trailerheader nodes/positions

entries

9 c 6 c 5 c 8 c

© 2014 Goodrich, Tamassia, Goldwasser

The get(k) Algorithm

Algorithm get(k):
while map.hasNext() do
p = map.next() { the next element in the map}
if p.element().getKey() = k then

return p.element().getValue()
return null {there is no entry with key equal to k}

The put(k,v) Algorithm

Algorithm put(k,v):
while map.hasNext() do

p = map.next()
if p.element().getKey() = k then
t = p.element().getValue()
map.set(p,(k,v))
return t {return the old value}

map.addLast((k,v))
n = n + 1 {increment variable storing number of entries}
return null { there was no entry with key equal to k }

The remove(k) Algorithm

Algorithm remove(k):
while map.hasNext() do

p = map.next()
if p.element().getKey() = k then
t = p.element().getValue()
map.remove(p)
n = n – 1 {decrement number of entries}
return t {return the removed value}

return null {there is no entry with key equal to k}

Performance of a List-Based Map

• Performance:
• put takes O(1) time since we can insert the new item at the

beginning or at the end of the sequence
• get and remove take O(n) time since in the worst case (the item is

not found) we traverse the entire sequence to look for an item with
the given key

• The unsorted list implementation is effective only for
maps of small size or for maps in which puts are the
most common operations, while searches and removals
are rarely performed (e.g., historical record of logins to a
workstation)

Hash Map

Let’s Start With this
Question

• How much time does it take to lookup an item in an
array, if you already know its index?

Example
• Suppose you’re writing a program to access

employee records for a company with 1000
employees.

• Goal: fastest possible access to any individual
record

❖ Each employee has a number from 1(founder) to
1000 (the most recent worker)

❖ Employees are seldom laid off, and even when they
are, their record stays in the database.

Example (cont.)
• The easiest way to do this is by using an array (we

already know the size)

• Each employee record occupies one cell of the array

• The index number of the cell is the employee number

empRecord rec = databaseArray[72];

databaseArray[totalEmployees++] = newRecord;

Example (cont.)
• The speed and simplicity of data access using this

array-based database make it very attractive.

• However, it works in our example only because keys
are well organized

❖ Sequentially from 1 to a known maximum

❖ No deletions required

❖ New items can be added sequentially at the end

Example (cont.)
• But mostly, the keys are not so well behaved

• A simple example would be when keys are of type
String.

❖ Array indexing requires integer

• One more problem: Even when using integers, the
value could be outside of the range of the array

What Did We Learn From
The Example?

• Arrays are very fast when it comes to accessing an
item based on its index

• But “key” 🡪 “index” mapping only works when

❖ keys are integers, and

❖ are within the bound, and

❖ are not changed

Hash Map
• Hash Table is a very practical way to maintain a map

Hash Table

Hash Table

Hash Function

• A hash function h maps keys of a given type to
integers in a fixed interval [0, N − 1]

❖ Example:
h(x) = x mod N
is a hash function for integer keys

• The integer h(x) is called the hash value of key x

Simple Hash Function for
Integers

General Hash Functions

• A hash function is usually
specified as the composition
of two functions:

Hash code:
 h1: keys → integers

Compression function:
 h2: integers → [0, N → 1]

• The hash code is
applied first, and the
compression function is
applied next on the
result, i.e.,
h(x) = h2(h1(x))

• The goal of the hash
function is to “disperse”
the keys in a uniform
manner

Parts of a Hash Function

© 2014 Goodrich, Tamassia, Goldwasser

Ideal Hash Function
❖ Every resulting hash value has exactly one input that

will produce it

❖ Same key hashes to the same index (repeatable)

❖ Hash value is widely different if even a single bit is
different in the key (avalanche)

❖ Should work in general (for different types)

Some Principles
1. If n items are placed in m buckets, and n is greater

than m, one or more buckets contain two or more
items (Pigeonhole Principle)

❖ This is called collision (two keys hash to the same
index)

2. Birthday paradox

https://en.wikipedia.org/wiki/Birthday_problem

Collisions
• So collisions are inevitable

• Our goal should therefore be to minimize collisions

• We will achieve it through:

❖ Generating better hash codes

❖ Performing better compression

❖ Handling collisions

Tip!
• Designing a hash function is a black art

• It is always better to use a known good algorithm

• But sometimes, as a student, it is better to try to
design one for the sake of practice

Hash Codes
1. Memory address:

• We reinterpret the memory address of the key
object as an integer (default hash code of all Java
objects)

• Good in general, except that it is not repeatable

© 2014 Goodrich, Tamassia, Goldwasser

Hash Codes (cont.)
2. Integer cast:

• We reinterpret the bits of the key as an integer

• Suitable for keys of length less than or equal to the
number of bits of the integer type (e.g., byte, short,
int and float in Java)

© 2014 Goodrich, Tamassia, Goldwasser

Hash Codes (cont.)

3. Component sum:

• We partition the bits of the key into components of fixed
length (e.g., 16 or 32 bits) and we sum the components

• Fails to treat permutations differently (“abc”, “cba”, “cab”)

© 2014 Goodrich, Tamassia, Goldwasser

Hash Codes (cont.)

• We partition the bits of the key into a sequence of components of fixed
length (e.g., 8, 16 or 32 bits)

 a0 a1 … an−1
• We evaluate the polynomial

p(z) = a0 + a1 z + a2 z
2 + …

 … + an−1z
n−1

at a fixed value z
• Especially suitable for strings (e.g., the choice z = 33 gives at most 6

collisions on a set of 50,000 English words)
© 2014 Goodrich, Tamassia, Goldwasser

4. Polynomial accumulation:

Compression Functions
1. Division:

• h2 (y) = y mod N

• The size N of the hash table is usually chosen to be a

prime

• Helps “spread out” the distribution of hashed values

• Try inset keys with hash codes {200, 205, 210, 215, …,

600} into a table size of 100 vs. 101

Compression Functions
2. Multiply, Add and Divide (MAD)

• h2 (y) = [(ay + b) mod p] mod N

• p is a prime number larger than N

• a and b are integers from the interval [0, p – 1], with a

> 0

Collision Handling

•

Collision Handling
1. Separate Chaining: let each cell in the table point to

a linked list of entries that map there

• Separate chaining is simple, but requires additional
memory outside the table

∅

∅
∅

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Analysis of get(k) in Separate
Chaining

•

•

Analysis of get(k) in Separate
Chaining

Collision Handling
2. Open Addressing: the colliding item is placed in a

different cell of the table

A. Linear Probing: handles collision by placing the
item in the next (circularly) available cell

❖ Each cell inspected is called a probe

❖ Colliding items lump together, causing future
collisions to cause a longer sequence of probes

Example
● Example:

● Linear probing
● h(x) = x mod 13
● Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

Example
● Example:

● Linear probing
● h(x) = x mod 13
● Insert keys 18, 41,

22, 44, 59, 32, 31,
73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

Search with Linear Probing
• Consider a hash table A that

uses linear probing
• get(k)

• We start at cell h(k)
• We probe consecutive

locations until one of the
following occurs
❖ An item with key k is

found, or
❖ An empty cell is found, or
❖ N cells have been

unsuccessfully probed

Algorithm get(k)
i ← h(k)
p ← 0
repeat

c ← A[i]
if c = ∅

return null
 else if c.getKey () = k

return c.getValue()
else

i ← (i + 1) mod N
p ← p + 1

until p = N
return null

Updates with Linear Probing

• To handle insertions and deletions, we introduce a
special object, called DEFUNCT, which replaces deleted
elements

• remove(k)
❖ We search for an entry with key k
❖ If such an entry (k, o) is found, we replace it with the

special item DEFUNCT and we return element o
❖ Else, we return null

Updates with Linear Probing

• put(k, o)
❖ We throw an exception if the table is full
❖ We start at cell h(k)
❖ We probe consecutive cells until the following occurs

� A cell i is found that is either empty or stores
DEFUNCT, or

❖ We store (k, o) in cell i

Collision Handling
3. Open Addressing: the colliding item is placed in a

different cell of the table

B. Double Hashing: uses a secondary hash function
d(k) and handles collision by placing an items in the first
available of cell of the series

(h(k) + jd(k)) mod N

 for j = 1, … , N − 1

Double Hashing
• The secondary hash function cannot have zero values

• The table size N must be prime to allow probing of all
the cells.

Double Hashing
• Common choice of compression function for the

secondary hash function:

d(k) = q − (k mod q)

where
q < N
q is a prime

The possible values for d(k) are
 1, 2, … , q

Example
• Consider a hash table

storing integer keys that
handles collision with
double hashing
• N = 13
• h(k) = k mod 13
• d(k) = 7 − k mod 7

• Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

Example
• Consider a hash table

storing integer keys that
handles collision with
double hashing
• N = 13
• h(k) = k mod 13
• d(k) = 7 − k mod 7

• Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

•

Analysis of get(k) in Open
Addressing

Did we achieve today’s
objectives?

• What is a “MAP ADT”?

• What choices do we have to implement a MAP?

• What is a hash function and a hash table?

• What is collision and how it handle it?

• How to analyze time complexity of a Hash Map?

