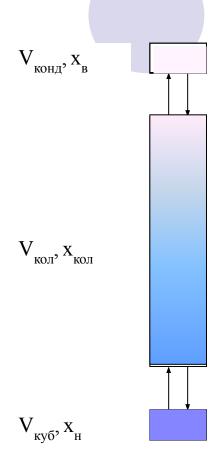

Дистилляция, ректификация, сублимация

методы основаны на различии в составе жидкости и (дистилляция, ректификация) или твердого вещества и газа или пара (сублимация).

Упаривание (простая перегонка, дистилляция)

Степень обогащения:

$$F = \frac{V_0}{V_{\kappa}}$$


Степень разделения (уравнение Релея):
$$K = \frac{x_{\kappa}}{x_0} = \left(\frac{V_0}{V_{\kappa}}\right)^{\frac{\alpha-1}{\alpha}}$$

х – концентрация менее летучего компонента; α - коэффициент разделения; V_0, V_{κ} – начальное и конечное количество раствора

Пример: Пусть отношение летучестей компонентов равно $\alpha_1 = 1,5$ и $\alpha_2 = 10$, а Vк=0,1V₀.

$$K_1 = \frac{x_{\kappa}}{x_0} = (10)^{\frac{1.5-1}{1.5}} = 2.15$$
 $K_2 = \frac{x_{\kappa}}{x_0} = (10)^{\frac{10-1}{10}} = 7.9$

Ректификация

V_{кол} – объем жидкости в колонне;

 $V_{\text{куб}}$ – объем жидкости в кубе;

 $V_{\text{конд}}^{\dagger}$ – объем жидкости в колонне;

х – труднолетучий компонент

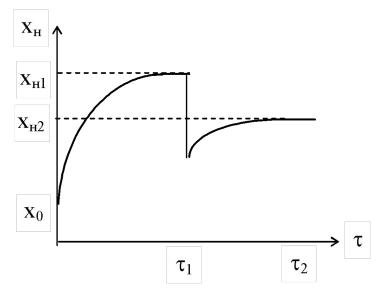
х средняя концентрация в колонне;

х_н –концентрация в кубе;

х понцентрация в конденсаторе

В стационарном состоянии уравнение материального баланса в установке:

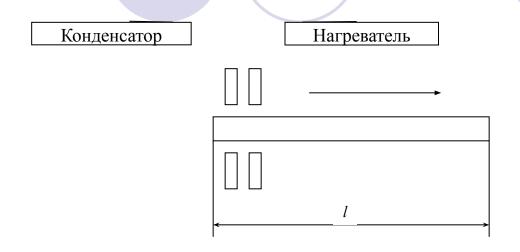
$$V_0 \cdot x_0 = V_{\kappa O H \partial} \cdot x_{\varepsilon} + V_{\kappa O \pi} \cdot x_{\kappa O \pi} + V_{\kappa V \delta} \cdot x_{H}$$


Степень разделения :
$$K = \frac{x_H}{x_g}$$

Способы определения степени разделения:

1 способ. Вводят реперный компонент с близкими к определяемому компоненту свойствами: $\alpha_p \sim \alpha$, $x_{0,p} >> x_0$

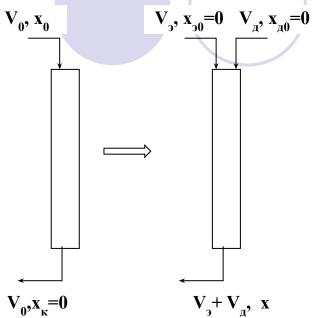
$$K = \alpha^{n} \qquad K_{p} = \alpha_{p}^{n} \qquad \Longrightarrow \quad \ln K = \frac{\ln K_{p} \cdot \ln \alpha}{\ln \alpha_{p}}$$


2 способ. Колонну, заполненную смесью с содержанием примеси \mathbf{x}_0 последовательно выводят в стационарное состояние:

$$x_0 = \frac{V_1}{V_0} \cdot \frac{x_{\text{H1}}}{1 - \frac{x_{\text{H2}}}{x_{\text{H1}}}}$$

Достоинство 2 способа — не нужно знать свойства примеси (коэффициент разделения) и характеристики колонны.

Направленная кристаллизация


Зона легкоплавкого компонента передвигается по направлению движения плавки. При этом примеси концентрируются на концах образца.

Осаждение и соосаждение

Разделение и концентрирование примесей этим методом осаждения основано на различной растворимости компонентов в растворе. Простым осаждением трудно количественно выделить микропримесь при ее концентрации $<10^{-4}$ масс.%.

Соосаждение — концентрирование микроэлемента на осадке другого соединения. Соосаждение происходит либо за счет адсорбции микроэлемента на поверхности осадка, либо за счет образования изоморфных кристаллов.

Ионообменное концентрирование

Метод применяется в случае, когда примеси находятся в виде ионов. В случае микроэлементы ЭТОМ сорбируются количественно И3 раствора на небольшой колонке, заполненной ионитом, a затем вымываются из колонки небольшим количеством элюента И анализируются.

Достоинства: 1) при небольшом коэффициенте распределения обеспечивается полное извлечение примеси, т.к. процесс многоступенчатый; 2) можно разделять примеси, последовательно элюируя их из колонны (ионообменная хроматография).

Пример: Имеется водный раствор, содержащий микропримеси ионов Fe^{2+} . Ионообменная смола КУ-2 в H^+ -форме. V_0 =1000 мл, $\mathbf{x_0}$ =? Элюент — раствор HCl, V_3 =10 мл Промывка — дистиллированная вода, $V_{_{\rm H}}$ =10 мл. $\Rightarrow \frac{x}{x_0}$ =50