Физиология микроорганизмов.

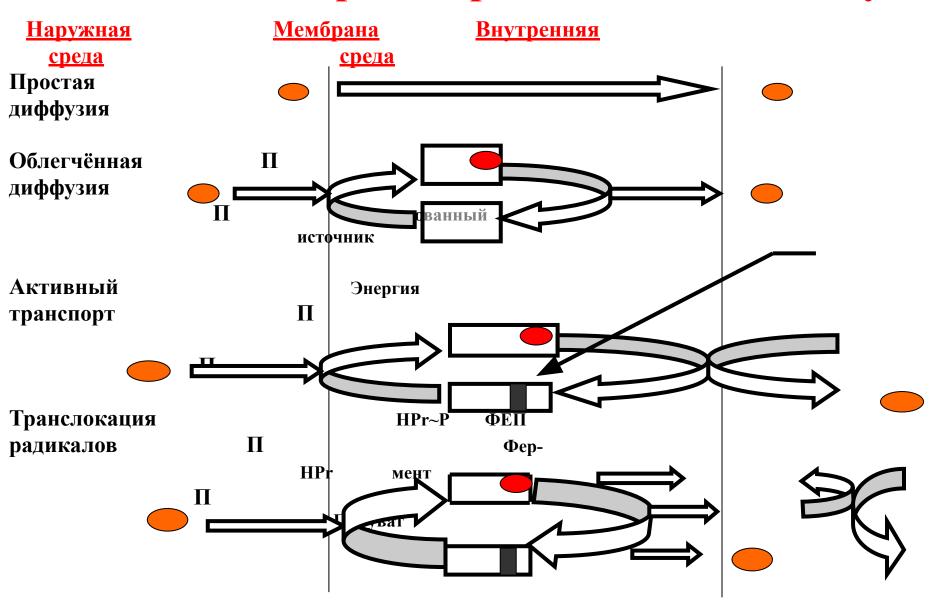
Химический состав микробной клетки

- вода 70-85% от общей массы;
- сухой остаток 15-30% от массы микробной клетки;
- белки;
- нуклеиновые кислоты;
- липиды;
- углеводы;
- минеральные вещества.

Метаболизм микроорганизмов состоит из двух взаимосвязанных процессов анаболизма или конструктивного метаболизма и катаболизма или энергетического метаболизма.

Особенности обмена веществ у микробов

- быстрота и интенсивность обменных процессов,
- выраженная приспособляемость к изменяющимся условиям внешней среды,
- питание осуществляется через всю поверхность клетки.


Классификация бактерий по источнику питания

- Аутотрофы (для построения клеток используют неорганические вещества).
- Гетеротрофы (для построения клеток используют органические вещества).

Классификация бактерий по источнику энергии

- Фототрофы (источником энергии является свет).
- Хемотрофы (источником энергии являются окислительно-восстановительные реакции).

Механизмы транспорта веществ в клетку

Ферменты микроорганизмов

Ферменты- катализаторы биологических процессов. Характерным свойством ферментов является их специфичность.

Каждый фермент участвует только в определенной реакции с определенным химическим соединением.

Ферменты, которые выделяются бактериальной клеткой в окружающую среду и осуществляют внеклеточное переваривание, называются экзоферментами.

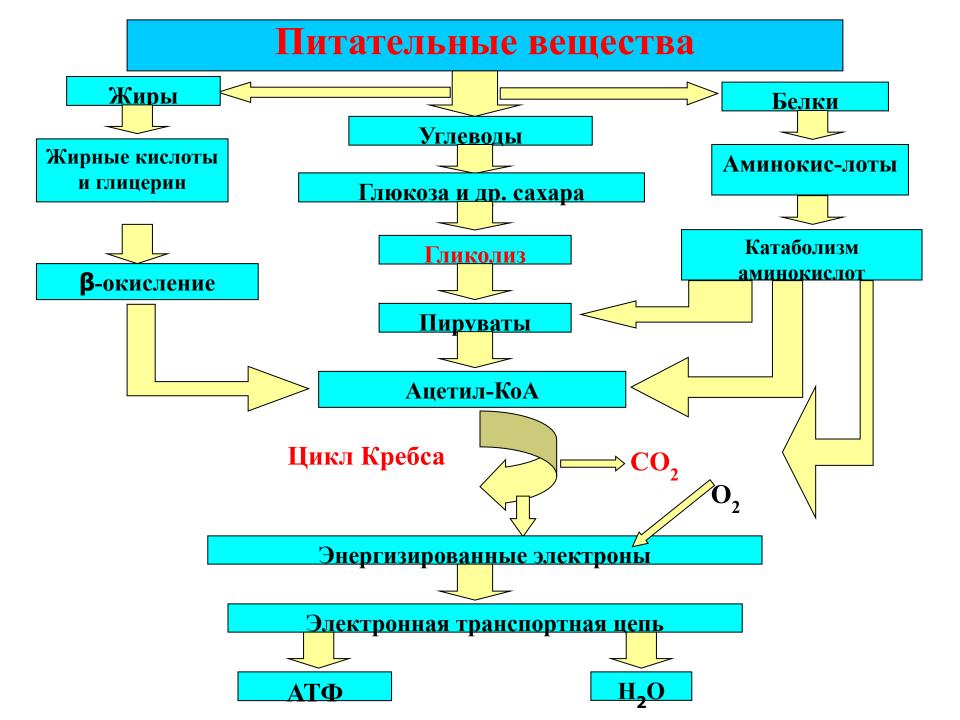
Эндоферменты участвуют в процессах метаболизма внутри клетки.

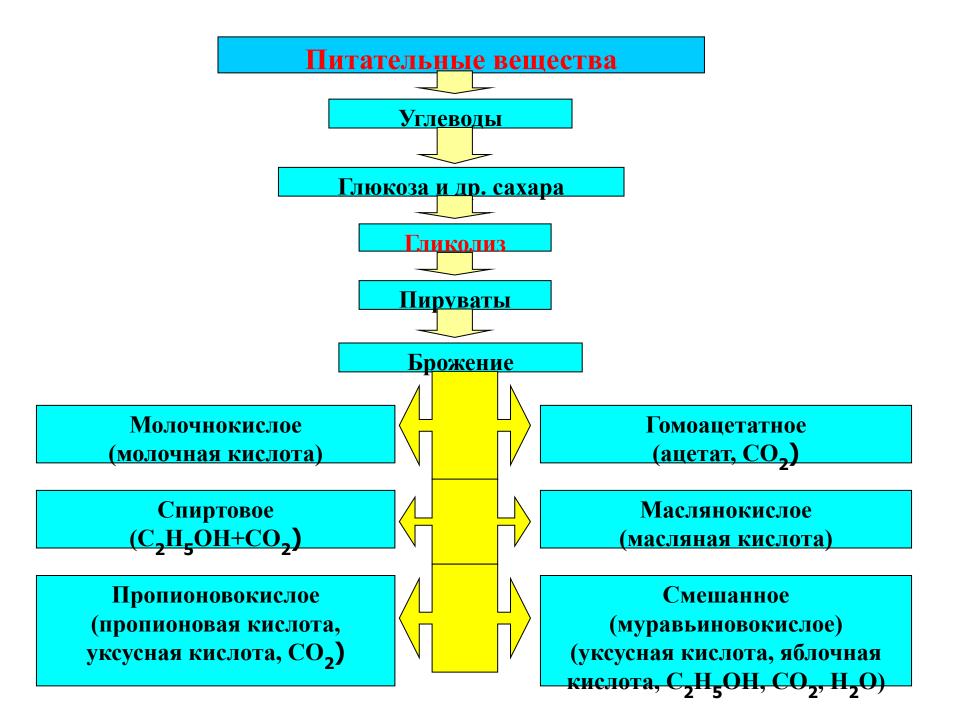
Классификация ферментов микроорганизмов в зависимости от наличия или отсутствия субстрата

Конститутивные (продукция не зависит от наличия или отсутствия субстрата).

Адаптивные:

индуцируемые (продукция индуцируется присутствием субстрата);


ингибируемые (продукция ингибируемых ферментов, напротив, подавляется присутствием в среде конечного субстрата в достаточно большой концентрации)


Ферменты патогенности

- гиалуронидаза;
- коллагеназа;
- днк-аза
- нейраминидаза;
- плазмокоагулаза;
- фибринолизин.

Типы биологического окисления

Аэробный	Анаэробный
Гликолиз Цикл Кребса	Гликолиз Брожение
Дыхательная цепь	
+	-
НАД НАДФ ФАД ФМН	НАД НАДФ ФАД ФМН
Цитохромная система	
Супероксиддисмутаза Каталаза	
\mathbf{O}_2	Неорганические, органические соединения
CO_2 , H_2O	Промежуточные
38 молекул АТФ 2872 кДж/моль	2 молекулы АТФ 166 кДж/моль
	Гликолиз Цикл Кребса Дыхательная цепь + НАД НАДФ ФАД ФМН Цитохромная система Супероксиддисмутаза Каталаза CO ₂ , H ₂ O 38 молекул АТФ

Показатель анаэробности среды:

rH₂ – показатель насыщенности среды кислородом.

Диапазон изменений – 0-41.

Облигатные анаэробы – 0-12.

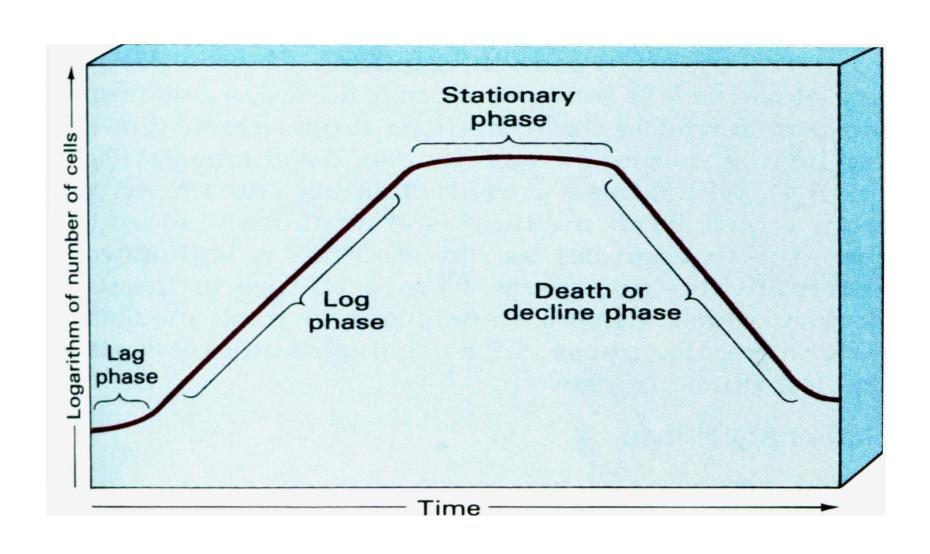
Облигатные аэробы – 20-41.

Факультативные анаэробы – 10-40.

Способы создания анаэробных условий

• Физические:

удаление воздуха; замена воздуха индифферентным газом; удаление кислорода (сжигание); культивирование в глубине агара.


• Химические:

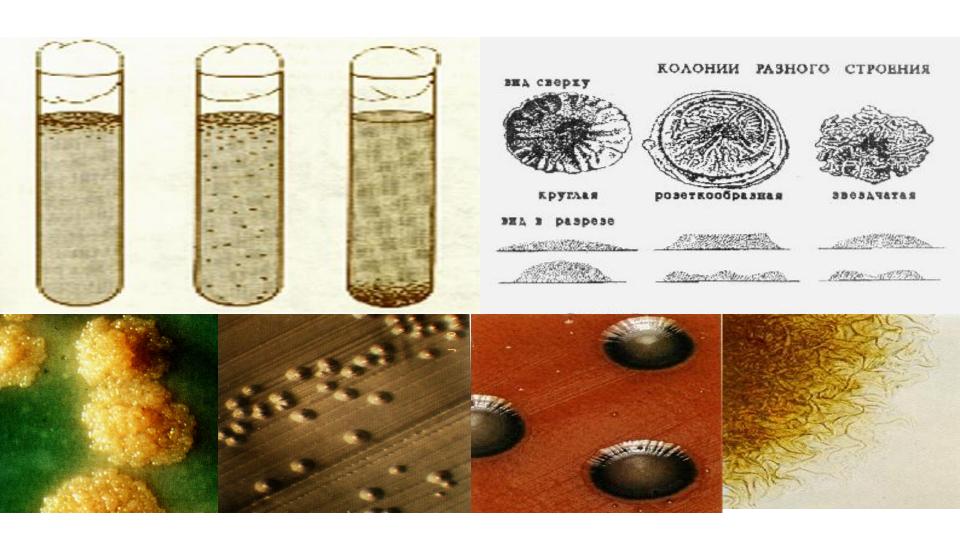
связывание кислорода воздуха химическим путём.

• Биологические:

совместное культивирование анаэробных и аэробных микроорганизмов на плотной питательной среде.

Динамика роста и размножения микроорганизмов

Культуральные свойства микроорганизмов


- Оптимальные условия культивирования (соответствующая и полноценная питательная среда, оптимальная температура, аэробность или анаэробность и т.д.).
- Характер роста на жидких и плотных питательных средах.

Температурные условия, при которых микроорганизмы

могут расти и размножаться

Группы микроорганизмов	Температурный, ^О С		
	минимум	оптимум	максимум
Психрофилы	0	15-20	30
Мезофилы	10	37	45
Термофилы	25	50-60	80
Экстремальные термофилы	45	80	93

Характер роста микроорганизмов

Пигменты микроорганизмов

Значение пигментов:

защита микробов от действия солнечного света; участие в обмене веществ микроорганизмов.

Условия образования:

солнечный свет; наличие кислорода.

Классификация пигментов по растворимости:

растворимые в воде (пиоцианин); растворимые в органических растворителях (продигиозан);

нерастворимые в воде и органических растворителях (липохромы).

Требования, предъявляемые к питательным средам:

- наличие необходимых питательных веществ в достаточном количестве и легкоусвояемой форме;
- оптимальная кислотность (рН);
- оптимальный редокс-потенциал (rH₂);
- изотоничность;
- влажность;
- нетоксичность для исследуемых микробов;
- определённая вязкость;
- стерильность.

Классификация питательных сред По консистенции:

жидкие;

полужидкие;

плотные.

По составу:

простые; сложные.

По происхождению:

естественные; искусственные; синтетические.

По назначению:

основные; обогащённые (специальные); селективные (элективные); накопительные; дифференциально-диагностические; транспортные и консервирующие; среды для хранения культур. **Колония** — скопление бактерий одного вида на (или в) плотной питательной среде.

Чистая культура — популяция микробов, состоящая из особей одного вида.

Штамм — чистые культуры микробов одного вида, полученные из разных источников или из одного источника в разное время.

Клон – культура микроорганизмов, полученная из одной клетки.