Lecture 1

General physiology of the excitable tissues.

THE RESTING CELL

HIGH POTASSIUM

- LOW SODIUM
- NA/K ATPASE PUMP
- RESTING POTENTIAL ABOUT 90 -120 MV
- OSMOTICALLY BALANCED (CONSTANT VOLUME)

BIOELECTRICITY

THE ORIGIN OF THE MEMBRANE POTENTIAL

MOBILITY OF IONS DEPENDS ON HYDRATED SIZE

- IONS WITH SMALLER CRYSTAL RADIUS HAVE A HIGHER CHARGE DENSITY
- THE HIGHER CHARGE DENSITY ATTRACTS MORE WATER OF HYDRATION
- THUS THE SMALLER THE CRYSTAL RADIUS, THE LOWER THE MOBILITY IN WATER

IONS MOVE WITH THEIR HYDRATION SHELLS

ELECTRONEUTRAL DIFFUSSION

HIGH SALT CONCEMTRATION

LOW SALT CONCEMTRATION

BARRIER SEPARATES THE TWO SOLUTIONS

ELECTRONEUTRAL DIFFUSSION

CHARGE SEPARATION = ELECTRICAL POTENTIAL

ELECTRICAL POTENTIAL=CHARGE SEPARATION

In water, without a membrane hydrated Chloride is smaller than hydrated Sodium, therefore faster:

THE MEMBRANE POTENTIAL

THE ORIGIN OF BIOELECTRICITY

- POTASSIUM CHANNELS ALLOW HIGH MOBILITY
- SODIUM CHANNELS LESS OPEN
- CHARGE SEPARATION OCCURS
 UNTIL BOTH MOVE AT SAME SPEED
- STEADY STEADY IS ACHIEVED WITH A CONSTANT MEMBRANE POTENTIAL

THE RESTING CELL

- HIGH POTASSIUM
- LOW SODIUM
 NA/K ATPASE PUMP
- RESTING POTENTIAL ABOUT 90 -120 MV
- OSMOTICALLY BALANCED (CONSTANT VOLUME)

ACTIVE TRANSPORT

ACTIVE TRANSPORT REQUIRES AN INPUT OF ENERGY

- USUALLY IN THE FORM OF ATP
- ATPase IS INVOLVED
- SOME ASYMMETRY IS NECESSARY
- CAN PUMP UPHILL

EXCITABLE TISSUES

- NERVE AND MUSCLE
- VOLTAGE GATED CHANNELS
- DEPOLARIZATION LESS THAN THRESHOLD IS GRADED
- DEPOLARIZATION BEYOND THRESHOLD LEADS TO ACTION POTENTIAL
- ACTION POTENTIAL IS ALL OR NONE

THE NERVE CELL

EXCITABLE TISSUES:THE ACTION POTENTIAL

- THE MEMBRANE USES VOLTAGE GATED CHANNELS TO SWITCH FROM A POTASSIUM DOMINATED TO A SODIUM DOMINATED POTENTIAL
- IT THEN INACTIVATES AND RETURNS TO THE RESTING STATE
- THE RESPONSE IS "ALL OR NONE"

EQUILIBRIUM POTENTIALS FOR IONS

FOR EACH CONCENTRATION DIFFERENCE ACROSS THE MEMBRANE THERE IS AN ELECTRIC POTENTIAL DIFFERENCE WHICH WILL PRODUCE EQUILIBRIUM.

AT EQUILIBRIUM NO NET ION FLOW OCCURS

THE EQUILIBRIUM MEMBRANE POTENTIAL FOR POTASSIUM IS -90 mV

THE EQUILIBRIUM MEMBRANE POTENTIAL FOR SODIUM IS + 60 mV

THE RESTING POTENTIAL IS NEAR THE POTASSIUM EQUILIBRIUM POTENTIAL

- AT REST THE POTASSIUM CHANNELS ARE MORE OPEN AND THE POTASSIUM IONS MAKE THE INSIDE OF THE CELL NEGATIVE
 THE SODIUM CHANNELS ARE MORE CLOSED AND THE SODIUM MOVES
- SLOWER

EVENTS DURING EXCITATION

- DEPOLARIZATION EXCEEDS THRESHOLD
- SODIUM CHANNELS OPEN
- MEMBRANE POTENTIAL SHIFTS FROM POTASSIUM CONTROLLED (-90 MV) TO SODIUM CONTROLLED (+60 MV)
- AS MEMBRANE POTENTIAL REACHES THE SODIUM POTENTIAL, THE SODIUM CHANNELS CLOSE AND ARE INACTIVATED
- POTASSIUM CHANNELS OPEN TO REPOLARIZE THE MEMBRANE

OPENING THE SODIUM CHANNELS ALLOWS SODIUM TO RUSH IN

- THE MEMBRANE DEPOLARIZES AND THEN THE MEMBRANE POTENTIAL APPROACHES THE SODIUM EQUILIBRIUM POTENTIAL
- THIS RADICAL CHANGE IN MEMBRANE POTENTIAL CAUSES THE SODIUM CHANNELS TO CLOSE (INACTIVATION) AND THE POTASSIUM CHANNELS TO OPEN REPOLARIZING THE MEMBRANE
- THERE IS A SLIGHT OVERSHOOT (HYPERPOLARIZATION) DUE TO THE POTASSIUM CHANNELS BEING MORE OPEN

GRADED VS ALL OR NONE

• A RECEPTOR'S RESPONSE TO A STIMULUS IS GRADED

• IF THRESHOLD IS EXCEEDED, THE ACTION POTENTIAL RESULTING IS ALL OR NONE

SALTATORY CONDUCTION

NORMALLY A NERVE IS EXCITED BY A SYNAPSE OR BY A RECEPTOR

- MANY NERVES SYNAPSE ON ANY GIVEN
 NERVE
- RECEPTORS HAVE GENERATOR POTENTIALS WHICH ARE GRADED
- IN EITHER CASE WHEN THE NERVE IS DEPOLARIZED BEYOND THRESHOLD IT FIRE AN ALL-OR-NONE ACTION POTENTIAL AT THE FIRST NODE OF RANVIER

JUNCTION BETWEEN TWO NEURONS

- CHEMICAL TRANSMITTER
- MAY BE 100,000 ON A SINGLE CNS NEURON
- SPATIAL AND TEMPORAL SUMMATION
- CAN BE EXCITATORY OR INHIBITORY

POSTSYNAPTIC POTENTIALS

TIME

TEMPORAL SUMMATION

TOO FAR APART IN TIME: NO SUMMATION

TEMPORAL SUMMATION

CLOSER IN TIME: SUMMATION BUT BELOW THRESHOLD

TEMPORAL SUMMATION

SPATIAL SUMMATION

EPSP-IPSP CANCELLATION

NEURO TRANSMITTERS

- ACETYL CHOLINE
- DOPAMINE
- NOREPINEPHRINE
- EPINEPHRINE
- SEROTONIN

- **HISTAMINE**
- GLYCINE
- GLUTAMINE
- GAMMA-AMINOBU TYRIC ACID (GABA)