Семинар 2

Кинематический анализ плоского рычажного механизма V- образного ДВС методом планов

Цель семинара: изучение метода планов положений, скоростей и ускорений на конкретном примере рычажного механизма ДВС

Задачи семинара:

- 1. Построение кинематической схемы механизма (плана положений)
- 2. Построение плана скоростей для всех точек, обозначенных на механизме
- 3. Построение плана ускорений для всех точек, обозначенных на механизме
- 4. Знакомство с примерами оформления данного раздела первой части КР

<u>Далее</u>...

Исходные данные к первому ДЗ по Механике

`аблица Вари-	H	λ	\mathbf{D}_n	φ_1	β	n	$\frac{I_{AS_2}}{I}$	p $\left[\frac{H}{cM^2}\right]$
ант	[мм]	[1]	[мм]	[град]	[градј	$\left[\frac{o \delta}{M u H}\right]$	I _{AB}	
1	2	3	4	5	6	7	8	9
1.	50	0,28	75	30	60	3800	0,30	50
2.	60	0,28	78	45	70	3500	0,28	45
3.	70	0,28	82	60	80	3000	0,35	50
4.	80	0,28	85	75	90	2800	0,30	47
5.	90	0,28	98	120	100	3200	0,28	50
6.	54	0,25	72	15	110	3400	0,33	42
7.	66	0,25	76	60	120	3600	0,35	50
8.	74	0,25	80	45	60	2600	0,30	50
9.	92	0,25	92	30	70	2500	0,33	45
10.	88	0,25	82	45	80	2400	0,33	45
11.	60	0,27	65	60	90	2700	0,35	45
12.	70	0,27	75	30	100	2900	0,28	50
13.	80	0,27	75	120	110	3800	0,32	45
14.	84	0,27	95	150	120	3500	0,28	40
15.	94	0,27	90	120	60	3000	0,30	50
16.	50	0,29	78	45	70	2800	0,28	45
17.	60	0,29	80	60	80	3200	0,30	45
18.	70	0,29	82	45	90	3400	0,33	50
19.	90	0,29	95	30	100	3500	0,30	45
20.	100	0,29	85	60	110	2600	0,32	40
21.	52	0,30	78	30	60	2500	0,30	40
22.	64	0,30	76	45	70	2400	0,25	45
23.	72	0,30	80	60	80	2700	0,28	50
24.	84	0,30	95	75	90	2900	0,28	40
25.	92	0,30	90	30	100	3800	0,30	50
26.	50	0,25	72	15	110	3500	0,35	45
27.	60	0,25	82	60	120	3000	0,32	50
28.	70	0,24	85	45	60	2800	0,30	47
29.	80	0,25	63	30	70	3200	0,28	50
30.	90	0,25	65	75	80	3400	0,25	50

$\frac{\mathbf{p}}{\left[\frac{H}{cM^2}\right]}$	$\frac{l_{AS_2}}{l_{AB}}$	П [об мин]	β [град]	$arphi_1$ [град]	D _n [MM]	λ [1]	Н [мм]	Вари- ант
9	8	7	6	5	4	3	2	1
45	0,28	3600	90	45	76	0,28	54	31.
45	0,30	2600	100	60	80	0,28	64	32.
45	0,32	2500	110	75	75	0,28	74	33.
45	0,35	2400	120	60	85	0,28	85	34.
50	0,32	2700	60	30	85	0,28	90	35.
45	0,30	2900	70	45	65	0,26	50	36.
40	0,26	3800	80	60	75	0,26	60	37.
50	0,25	3500	90	75	78	0,26	75	38.
42	0,30	3000	100	105	80	0,26	85	39.
43	0,30	2800	110	120	90	0,26	95	40.
42	0,25	3200	60	135	70	0,22	54	41.
48	0,30	3400	75	120	78	0,22	65	42.
48	0,25	3600	90	150	80	0,22	70	43.
40	0,30	2600	105	75	70	0,22	80	44.
40	0,25	2500	120	45	60	0,22	90	45.
45	0,28	2400	60	150	65	0,28	52	46.
50	0,32	2700	75	135	75	0,24	60	47.
50	0,30	2900	90	30	90	0,25	75	48.
45	0,28	3800	105	45	92	0,26	82	49.
40	0,25	3500	120	60	85	0,27	100	50.
45	0,25	3000	60	75	85	0,28	60	51.
60	0,28	2800	75	45	70	0,29	65	52.
48	0,30	3200	90	75	75	0,30	72	53.
45	0,32	3400	105	60	85	0,30	75	54.
50	0,25	3600	120	80	95	0,29	80	55.
40	0,38	2600	60	120	80	0,28	56	56.
45	0,30	2500	75	150	69	0,27	68	57.
50	0,28	2400	90	75	70	0,26	76	58.
45	0,25	2700	105	60	75	0,25	85	59.
50	0,30	2900	120	80	80	0,24	95	60.

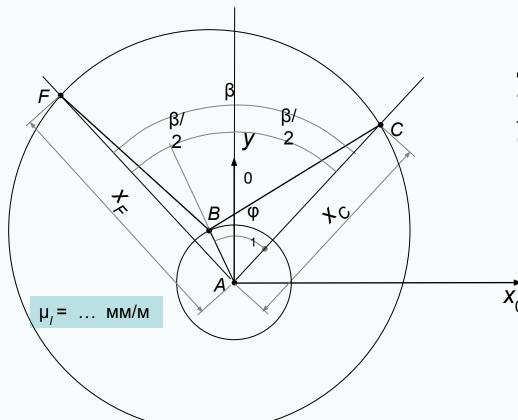
5

Постановка задачи:

Дано: Схема механизма, размеры — H_C = H_F , β , λ_2 = λ_4 , λ_{S2} = λ_{S4} , $K\cdot \varphi_1$, ω_1 , ϵ_1 , K.

Определить: $I_{j}, \phi_{j}, V_{j}, a_{j}, \omega_{j}, \epsilon_{i} \Rightarrow ?$

Перед началом построения плана механизма необходимо по имеющимся исходным данным определить недостающие размеры звеньев.


Длина кривошипа:
$$l_{{\scriptscriptstyle AB}} = \frac{K \cdot H_{{\scriptscriptstyle C}}}{2} \;\; , \; \mathbf{M}$$

Длина шатунов:
$$l_{BC}=l_{AB}\cdot\lambda_2$$
 , м $l_{BF}=l_{AB}\cdot\lambda_4$, м

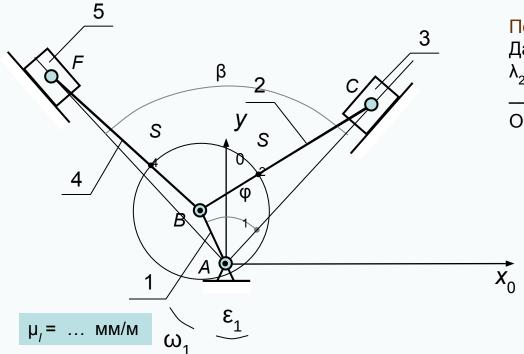
$$l_{BS2} = l_{BC} \cdot \lambda_{S2}$$
 , M

Положение центров масс на шатунах:

$$l_{BS4} = l_{BF} \cdot \lambda_{S4}$$
 , M

Постановка задачи:

Дано: Схема механизма, размеры — H_C = H_F , β , λ_2 = λ_4 , $\lambda_{\rm S2}$ = $\lambda_{\rm S4}$, ϕ_1 , ω_1 , ϵ_1 .

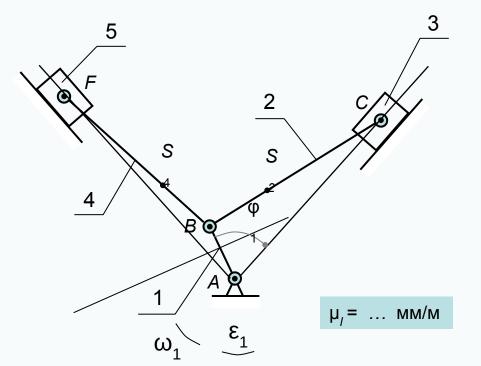

Определить: $I_r \phi_i V_i$, a_i , $\omega_r \epsilon_i \Rightarrow ?$

Построим план механизма и его кинематическую схему в заданном положении. Зададимся масштабом μ_r мм/м.

1. Выбираем произвольную точку, в которой размещаем центр пары *A*. Принимаем эту точку за начало правой системы координат x_0Ay_0 . Проводим оси первого и второго цилиндров ДВС, откладывая углы 0.5β по и против часовой стрелки от оси y_0 . Угловую координату кривошипа ϕ_1 отсчитываем от оси первого цилиндра.

Из точки A проводим окружность радиусом $r = \mu_l \cdot I_{AB}$. Точка пересечения этой окружности с прямой определяет положение центра шарнира В. Соединяем точки A и B и получаем изображение звена 1.

2. Из точки B радиусом $r = \mu_l \cdot I_{BC} = \mu_l \cdot I_{BF}$ проводим окружность. Точки пересечения этой окружности с осями цилиндров определяют положение центров шарниров C и F. Соединяем точку B с точками C и F и получаем изображение звеньев 2 и 4, координаты S_C и S_F , угловые координаты ϕ_2 и ϕ_4 .


Постановка задачи:

Дано: Схема механизма, размеры — H_C = H_F , β , λ_2 = λ_4 , $\lambda_{\rm S2}$ = $\lambda_{\rm S4}$, ϕ_1 , ω_1 , ϵ_1 .

Определить: $I_r \phi_i V_i$, a_i , $\omega_r \epsilon_i \Rightarrow ?$

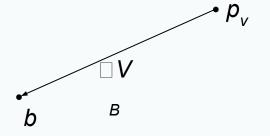
3. Из точки B радиусом $r = \mu_l \cdot I_{BS2} = \mu_l \cdot I_{BS4}$ проводим окружность. Точка пересечения этой окружности с линиями BC и BF определяет положение центров масс звеньев 2 и 4 (точки S_2 и S_4).

4. Наносим на полученный план положений условные обозначения звеньев и кинематических пар и получаем кинематическую схему шестизвенного механизма ДВС в заданном положении ϕ_1 .

Постановка задачи:

Дано: Схема механизма, размеры — H_C = H_F , β , λ_2 = λ_4 , $\lambda_{\rm S2}$ = $\lambda_{\rm S4}$, ϕ_1 , ω_1 , ϵ_1 .

Определить: $I_{r} \phi_{i} V_{i}$, a_{i} , $\omega_{r} \epsilon_{i} \Rightarrow ?$

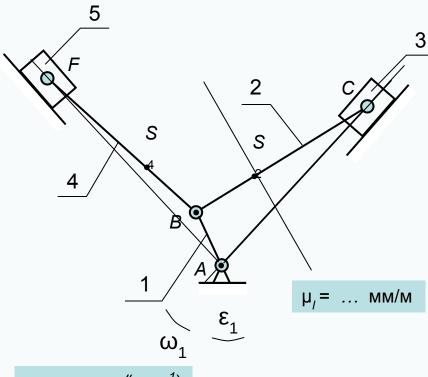

Движение звеньев механизма:

1 - вращательное,

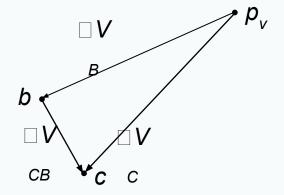
2 и 4 - плоское,

3 и 5 - поступательное.

 $\mu_V = \dots MM/(M \cdot c^{-1})$


1.1. Определение скоростей. План скоростей строится в масштабе μ_{V} , мм/м · c^{-1} на основании следующих уравнений:

вращательное движение 1-го звена


$$V_B = \omega_1 \cdot I_{AB}$$
 $V_B \perp I_{AB}$;

Отрезок плана скоростей $p_{V}b$ определяется через принятый масштаб μ_{V} , мм/м (масштаб, выбирается так, чтобы длина отрезка $p_{V}b$ лежала в пределах 50-100 мм)

$$p_V b = \mu_V \cdot V_B$$

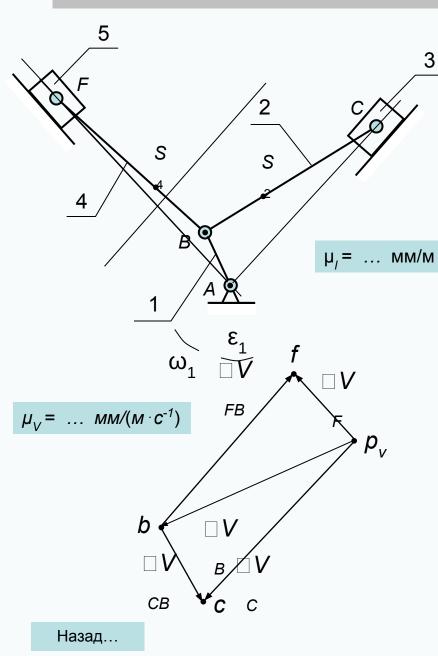
$$\mu_{V} = \dots MM/(M \cdot c^{-1})$$

Назад...

плоское движение звена 2

$$\Box V_{C} = \Box V_{B} + \Box V_{CB},$$
//AC

В этом $\frac{1}{B}$ орном уравнении вектор V_B известен по величине и направлению, а векторы V_C и V_{CB} известны только по направлению (первый направлен параллельно AC, второй - \bot отрезку BC).


Графически это уравнение решается так: на плане скоростей из конца вектора $V_{\rm B}$ проводится прямая \perp BC, а из полюса проводится прямая // AC.

Точка пересечения этих прямых (точка c) является решением векторного уравнения. Измеряются отрезки плана скоростей и c помощью масштаба рассчитываются значения скоростей $\Box V_C$ и $\Box V_{CR}$.

$$V_C = p_V c / \mu_V;$$

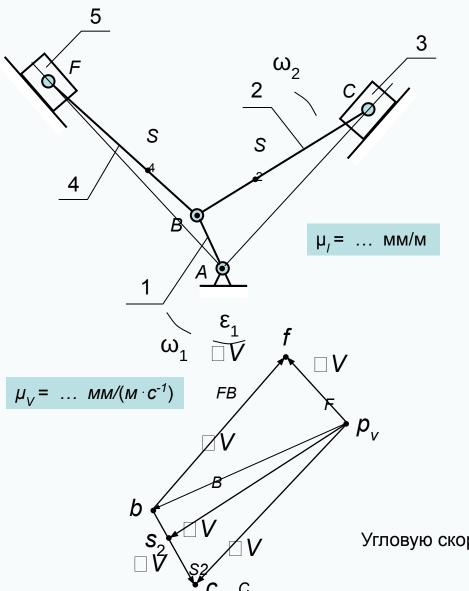
$$V_{CB} = cb/\mu_V;$$

Далее...

плоское движение звена 4

$$\Box V_F = \Box V_B + \Box V_{FB}$$

//AF LBF


В этом векторном уравнении вектор V_B известен по величине и направлению, а векторы V_F и V_{FB} известны только по направлению (первый направлен параллельно AF, второй - \bot отрезку BF).

Графически это уравнение решается так: на плане скоростей из конца вектора V_B проводится прямая \bot BF, а из полюса проводится прямая // AF. Точка пересечения этих прямых (точка f) является решением векторного уравнения. Измеряются отрезки плана скоростей и с помощью масштаба рассчитываются значения скоростей $\Box V_F$ и $\Box V_{FB}$.

$$V_F = \rho_V f / \mu_V;$$

$$V_{FB} = fb/\mu_V;$$

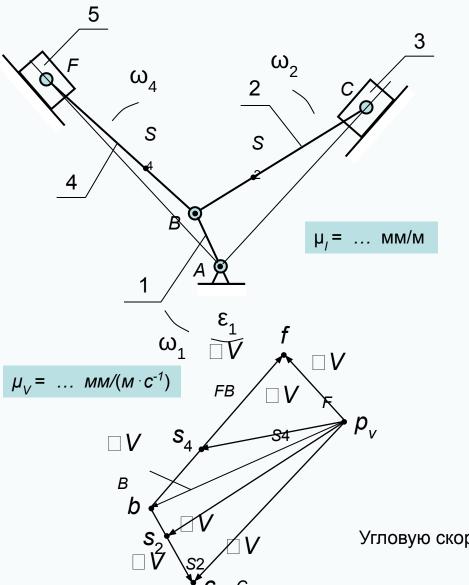
<u>Далее</u>...

Скорость точки S_2 второго звена определяем методом пропорционального деления. Составляем пропорцию

$$BS_2/BC = bs_2/bc$$
; $bs_2 = (BS_2/BC) \cdot cb$

и находим положение точки s_2 на плане скоростей. Соединяем эту точку с полюсом и определяем изображение вектора $V_{\rm S2}$, по которому рассчитываем значение этой скорости

$$V_{S2} = \rho_V s_2 / \mu_V$$
;


Угловую скорость звена 2 механизма находим по скорости $V_{\scriptscriptstyle CB}$

$$\omega_2 = V_{CB}/I_{CB}$$

<u>Далее</u>...

Назад...

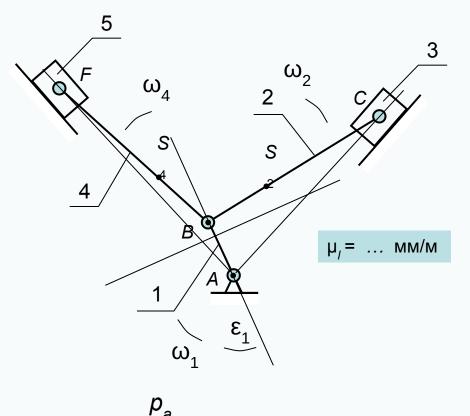
CB

Скорость точки S_4 четвертого звена определяем методом пропорционального деления. Составляем пропорцию

$$BS_{\Delta}/BF = bs_{\Delta}/bf;$$

$$bs_4 = (BS_4 / BF) \cdot bf;$$

и находим положение точки s_4 на плане скоростей. Соединяем эту точку с полюсом и определяем изображение вектора $V_{\rm S4}$, по которому рассчитываем значение этой скорости


$$V_{S4} = p_V s_4 / \mu_V;$$

Угловую скорость звена 4 механизма находим по скорости V_{FB}

$$\omega_4 = V_{FB}/I_{FB}$$
;

Далее...

CB

1.2. Определение ускорений. Ускорение точки *В* звена 1 определяем по уравнению вращательного движения

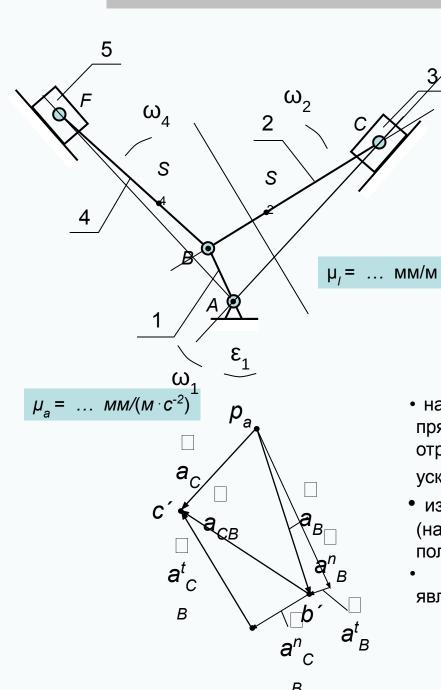
$$\Box a_B = \Box a^n_{\ B} + \Box a^t_{\ B}.$$
//AB \bot AB

В этом векторном уравнении: нормальная составляющая направлена // звену 1, а величина ее рассчитывается по формуле

$$a_B^n = \omega_1^2 \cdot I_{AB}^n$$

тангенциальная составляющая направлена <u></u>звену 1 и рассчитывается по формуле

$$a_B^t = \varepsilon_1 \cdot I_{AB}$$
.


Рассчитываются составляющие ускорения, выбирается масштаб плана ускорений μ_a (отрезок изображающий нормальную составляющую выбирается в пределах 50 -150 мм) и строится вектор ускорения точки B.

вектор

$$\mu_a = \dots \, MM/(M \cdot c^{-2})$$

Назад...

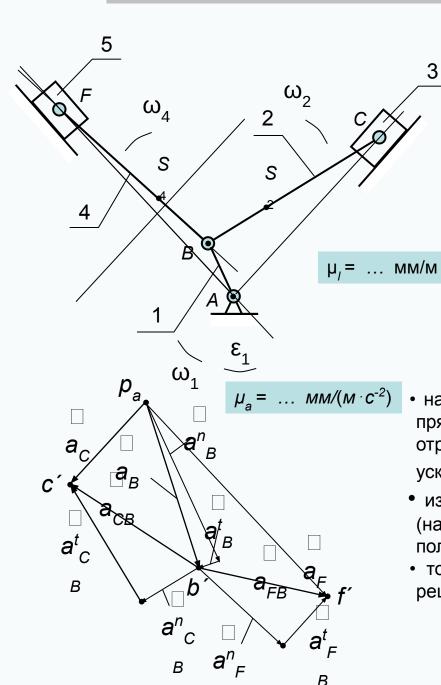
формуле

Ускорение точки *С* звена 2 определяем по уравнению плоского движения

$$\Box a_C = \Box a_B + \Box a^n_{CB} + \Box a^t_{CB}.$$
//AC //CB \(\to CB\)

В этом векторном уравнении: нормальная составляющая $\Box a^n_{CB}$ направлена // звену 2, а величина ее рассчитывается по

$$a_{CB}^n = \omega_2^2 \cdot I_{BC}^n$$


тангенциальная составляющая $\Box a \ ^t_{CB}$ направлена \bot звену 2, а ускорение $\Box a_{C}$ направлено по траектории движения звена 3 - //AC.

Графически это уравнение решается так:

- на плане ускорений из конца вектора $a_{\rm B}$ проводится прямая // BC и на ней откладывается в масштабе μ_a отрезок, изображающий составляющую относительного ускорения $a^n_{\ CB}$,
- из конца этого отрезка проводится прямая \bot звену 2 (направление тангенциальной составляющей a^t_{CB}), а из полюса проводится //AC (направление ускорения a_C),
- точка пересечения этих направлений (точка *c*') является решением векторного уравнения.

Назад...

<u>Далее</u>

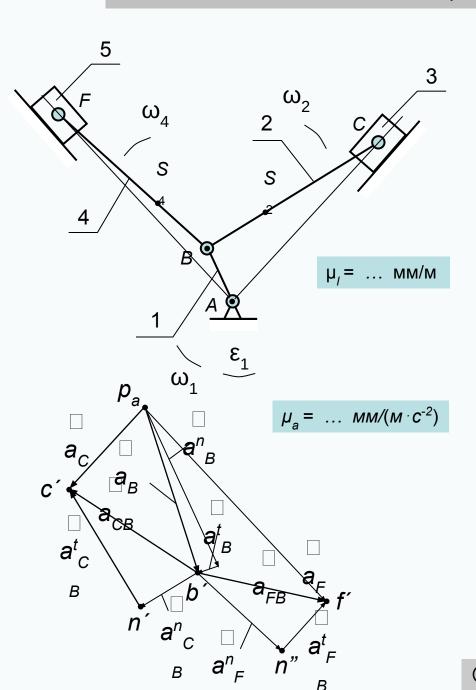
Ускорение точки F звена 4 определяем по уравнению плоского движения

$$\Box a_F = \Box a_B + \Box a^n_{FB} + \Box a^t_{FB}.$$
//AF //FB \(\perp FB\)

В этом векторном уравнении:

нормальная составляющая $\Box a^n_{FB}$ направлена // звену 4, а величина ее рассчитывается по формуле

$$a^n_{FB} = \omega_4^2 \cdot I_{FC}$$
,


тангенциальная составляющая $\Box a_{FB}^t$ направлена \bot звену 4, а ускорение $\Box a_F$ направлено по траектории движения звена 5 - //AF.

Графически это уравнение решается так:

- на плане ускорений из конца вектора a_F проводится прямая // BF и на ней откладывается в масштабе μ_a отрезок, изображающий составляющую относительного ускорения a^n_{FB} ,
- из конца этого отрезка проводится прямая \bot звену 4 (направление тангенциальной составляющей a^t_{FB}), а из полюса проводится //AF (направление ускорения a_F),
- точка пересечения этих направлений (точка f) является решением векторного уравнения.

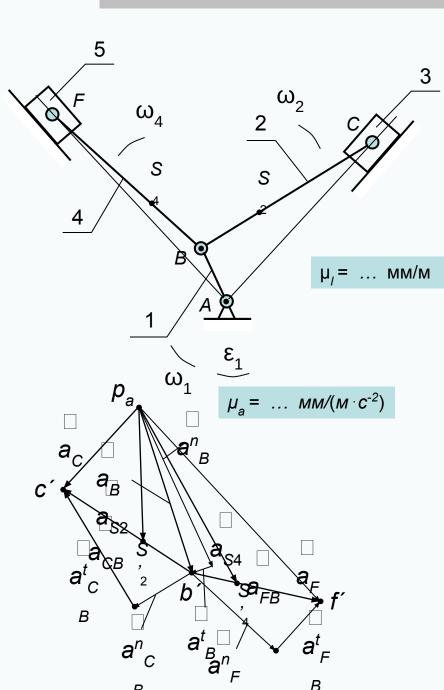
Назад...

Далее...

Далее измеряются отрезки плана ускорений и с помощью масштаба рассчитываются:

значения ускорений $\Box a \stackrel{t}{_{CB}}$ и $\Box a_{_C}$.

$$a_{CB}^{t} = n'c'/\mu_{a};$$
 $a_{C} = \rho_{a}c'/\mu_{a};$


$$a_C = p_a c'/\mu_a;$$

• значения ускорений $\square a_{FB}^{\ t}$ и $\square a_F$.

$$a_{FB}^{t} = n''f'/\mu_a;$$

$$a_F = p_{af} f' / \mu_a$$
;

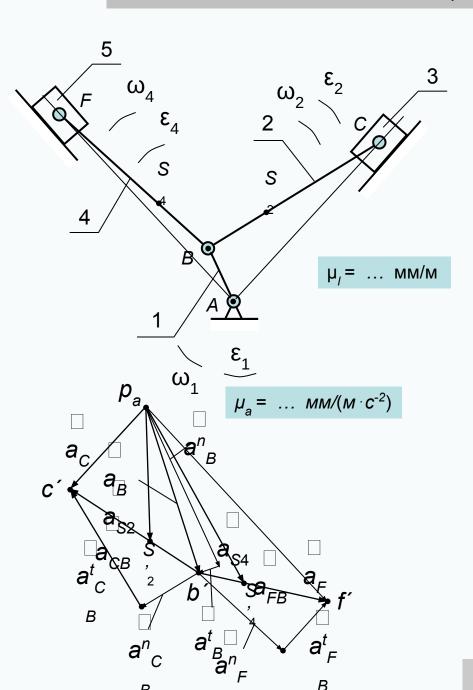
Назад...

Ускорение точки S_2 второго звена определяем методом пропорционального деления.

Составляем пропорцию

$$BS_2/BC = b's_2'/b'c';$$
 $b's_2' = (BS_2/BC) \cdot b'c';$

находим положение точки s_2 на плане ускорений. Соединяя ЭТИ ТОЧКИ полюсом изображение определяем вектора a₅₂, ПО рассчитывается которому значение ЭТОГО ускорения

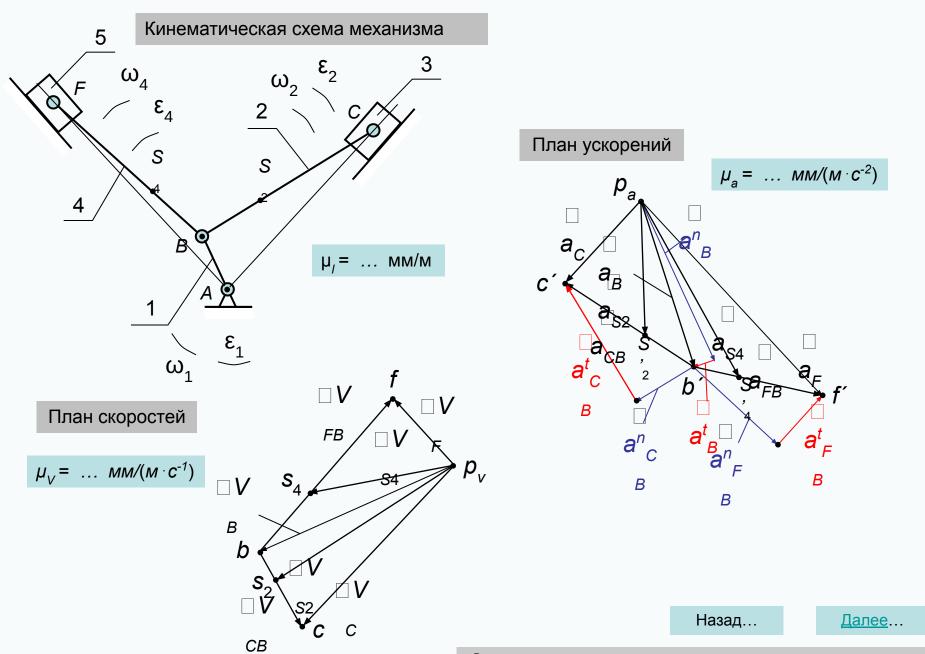

$$a_{S2} = p_a s_2' / \mu_a;$$

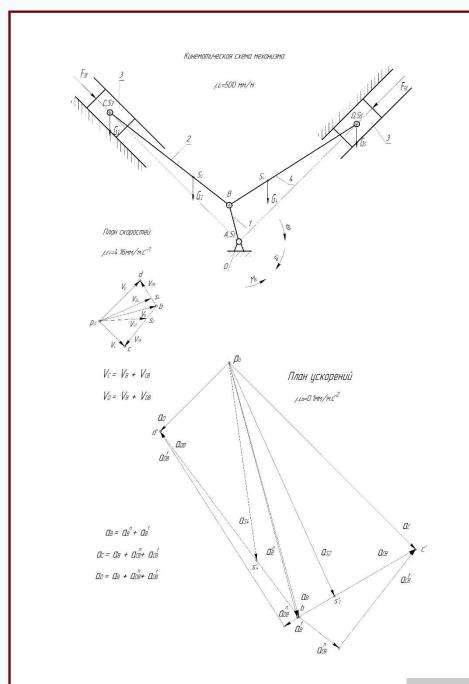
Аналогично определяется и ускорение точки $S_{\scriptscriptstyle A}$ четвертого звена.

$$BS_4/BF = b's_4'/b'f';$$
 $b's_4' = (BS_2/BC) \cdot b'c';$

$$a_{S4} = p_a s_4' / \mu_a;$$

Назад...



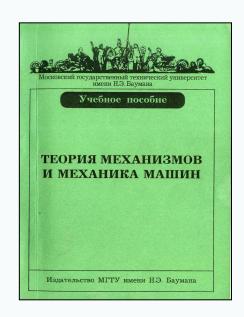

По тангенциальным составляющим ускорений a^t_{CB} и a^t_{CF} определяем угловые ускорения звеньев 2 и 4. Наносим их на схему механизма, определяя направление по направлению тангенциальных составляющих a^t_{CB} и a^t_{CF} .

$$\varepsilon_2 = a^t_{CB}/I_{CB};$$

$$\varepsilon_4 = a^t_{CF}/I_{CF};$$

Назад...

Пример оформления раздела КР по кинематическому анализу плоского рычажного механизма методом планов


Назад...

<u>Далее</u>...

Методические указания по выполнению первого домашнего задания

Литература:

- Теория механизмов и машин, ТММ-11, Методические рекомендации, Сафронов А. А.,2001
- 2. Структурное, кинематическое и кинетостатическое исследование плоских рычажных механизмов графоаналитическими способами, A10-148, Петровский В.В.
- 3. Теория механизмов и механика машин: Учеб. пособие / О.О. Барышникова, И.В. Леонов, В.А. Никаноров и др.; под ред. Г.А. Тимофеева. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 96с.; ил.