ОСНОВЫ НАНОИНЖЕНЕРИИ

Классификация наночастиц

СТРОЕНИЕ ГРАФИТА И АЛМАЗА

Bond length 1.4 nm Stacking distance 3.4 nm

СВЯЗИ И ГИБРИДИЗАЦИЯ

ПРАВДА УГЛЕРОД...?

АЛЛОТРОПНЫЕ МОДИФИКАЦИИ УГЛЕРОДА

ВРАЩЕНИЕ СЛОЕВ ГРАФЕНОВ

- Nanotubes can be rolled in different angles between 0 and 30 degrees.
- They are classified by the chirality vector given by the base lattice vectors a₁ and a₂: C = n a₁+m a₂

ДРУГИЕ ВИДЫ НАНОТРУБОК

C60

Multi-walled nanotube (MWNT)

- •5-50 walls interspacing: 3.5 nm (like graphite)
- diameters normally around 10-50 nm (can be up to 200 nm)
- •Can be very long, several 100 μm
- Walls slide easily inside each other (like graphite)
- The layers have independent chiralities (one may be armchair, the next zig-zag)

Nanotube rope

- Like graphite, the layers slide easily on each other
- Stick together by van der Waals forces

Нанопоршень из фуллерена и нанотрубки

ФОРМИРОВАНИЕ НАНОТРУБКИ

МНОГОСЛОЙНЫЕ НАНОТРУБКИ

Методы формирования

МЕТОДЫ ПОЛУЧЕНИЯ НАНОТРУБОК

Arc discharge

 Carbon is evaporated by a plasma of Helium. This is ignited by a high current passing through a graphite anode and cathode

Laser evaporation

 Direct laser vaporization of transitional metal (e.g. Co-Ni,1%) graphite composite electrode targets is done in helium atmosphere at high temperatures (1200°C).

Chemical vapor deposition

 Organic gas is decomposed (e.g. Methane) in an oven containing catalyst particles, at 600-800C. The diameter and type of catalyst particles determine the nanotube diameter and properties. Электродуговое распыление графита

Single wall nanotubes

Multiwall nanotubes

Лазерное испарение графита

Метод химического осаждения из пара

· CVD

- A hydrocarbon gas is decomposed at a high temperature
- Carbon diffuses into catalyst particle
 Ni, Fe and is expelled in form of a nanotube

MWNT:

Acetylene, 600 – 800°C.

SWNT

 Carbon monooxide, 900 – 1200°C (SWNT have higher formation energy)

Result:

- SWNT and MWNT of moderate quality
- Many impurities and defects
- large quantities, can be lithographically positioned

Химическое осаждение из

'Base' Growth Model

TEM data showing particle-tube relation

The catalyst particles grow from the base, and keep growing as long as the process continues and the catalyst is not encapsulated by carbon soot

CVD tubes (Stanford)

Catalyst printing

- Catalyst material is lithographically deposited on a surface. The nanotubes grow straight up in thick ropes matching the footprint of the catalyst
- Applications> field emission displays

ПОЛУЧЕНИЕ НАНОЧАСТИЦ СЕРЕБРА

