
# Ставропольский государственный медицинский университет

Кафедра микробиологии

Занятие 7

# **Тема занятия:** Общая вирусология





#### План занятия

#### А. Обсуждаемые вопросы:

- 1.Обсуждение теоретических и практических вопросов по теме занятия по схеме:
- І. Характеристика возбудителя
  - 1. Историческая справка
  - 2. Таксономия (семейство, род, вид(ы))
  - 3. Основные биологические свойства (морфология, ультраструктура, тинкториальные, культуральные, биохимические, резистентные, антигенные свойства, факторы патогенности, патогенность для животных)
- II.Эпидемилогия (источники инфекции, пути передачи и входные ворота инфекции).



- III. Краткая характеристика заболевания
  - 1. Принцип патогенеза и основные клинические формы.
  - 2. Особенности иммунитета.
- IV. Микробиологические методы диагностики (исследуемый материал, используемые питательные среды, экспресс методы диагностики, а также методы индикации и идентификации).
- V. Общая характеристика медико-биологических препаратов по следующей схеме:
  - 1. Что содержит препарат?
  - 2. Как его получают?
  - 3. Для чего его применяют?

#### Б. Практическая работа:

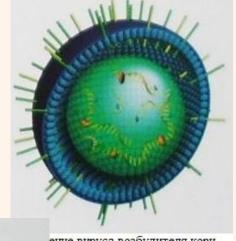
Методы лабораторных исследований при вирусных заболеваниях:

1. Вирусоскопический: микроскопия мазков с внутриклеточными включениями (Тельца Бабеша-Негри, Морозова-Пашена,

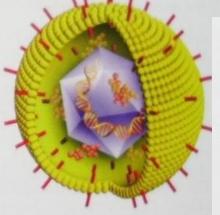
Гварниери, мазок-отпечаток со слизистой носа, РИФ)



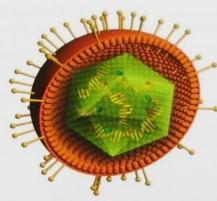
#### 1. Вирусологический:


- а) выделение вирусов из инфекционного материала (культура клеток, куриный эмбрион, животные);
- b) определение вируса в материале (ЦПД, РА, РГА, цветная проба, гемадсорбции);
- с) идентификация выделенного вируса (РСК, преципитации, РИФ, РТГА, реакция нейтрализации вируса и др.).
- 3. Биологический: методы заражения животных, определение вирусного инфицирования. Реакция нейтрализации вируса на животных.
- 4. Серологический:
  - а) реакции иммунитета, РТГА, РН, РСК, РИФ, ИФА, РНГА, прецепитации, задержки ЦПД и др.
  - b) Учет реакции нейтрализации для обнаружения титра антител (цветная пробы, PH).




Вирусы- это автономные генетические структуры, имеющие ультрамикроскопические размеры, являющиеся облигатными внутриклеточными паразитами, обладающие одним типом нуклеиновой кислоты(ДНК или РНК), не имеющие собственной белоксинтезирующей системы и размножающиеся особым типомдизъюнктивно (т.е. разобщенно) и относящиеся к царству Virea.

Примеры вирусных заболеваний: вирус возбудителя гриппа, кори, полиомиелита, ветряной оспы, краснухи, паротита, гепатита, ВИЧ






ение вируса возбудителя кори



Строение вируса возбудителя ветряной осп (опоясыван



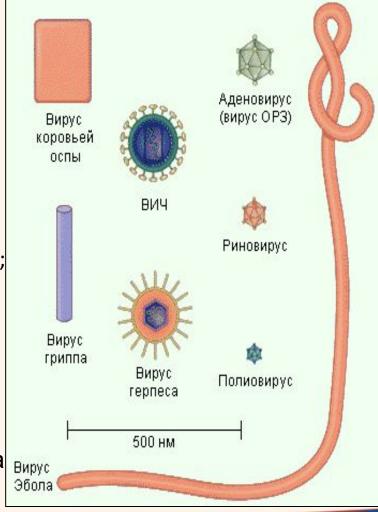
озбудителя краснухи



Строение вируса возбудителя паротита

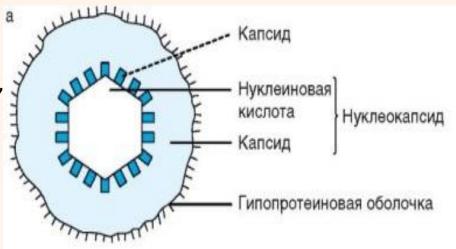
#### Классификация вирусов

#### 1. По размеру:


- а. маленькие( 15-100 нм, вирус полиомиелита);
- b. средние(100-300 нм);
- с. крупные(300-350 нм, вирусы натуральной оспы).

#### 2. По форме:

- а. палочковидные(вирус табачной мозаики);
- b. нитевидные(филовирусы);
- с. пулеобразные (вирус бешенства);
- d. шаровидные(вирусы полиомиелита);
- е. в виде сперматозоида(бактериофаги).


#### 3. По строению:

- а. простые (безоболочечные, вирус гепатита A);
- сложные (оболочные, вирус гриппа).





- 4. По типу симметрии:
  - а. спиральный(вирус гриппа);
  - b. икосаэдрический(кубический, вирус герпеса);
  - с. Сложный.
- 5. По типу нуклеиновой кислоты:
  - а. ДНК
  - b. PHK
- 6. По количеству нитей:
  - а. двунитевые
  - b. Однонитевые
- 7. По способу размножения;
- 8. По способу передачи вирусов;
- 9. По географическому расположени
- 10. По хозяину;
- 11. По антигенным свойствам;



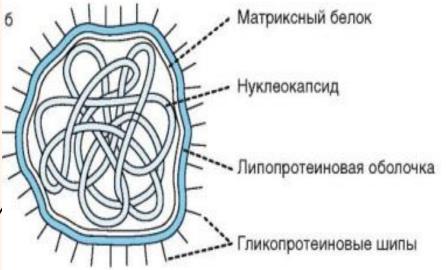
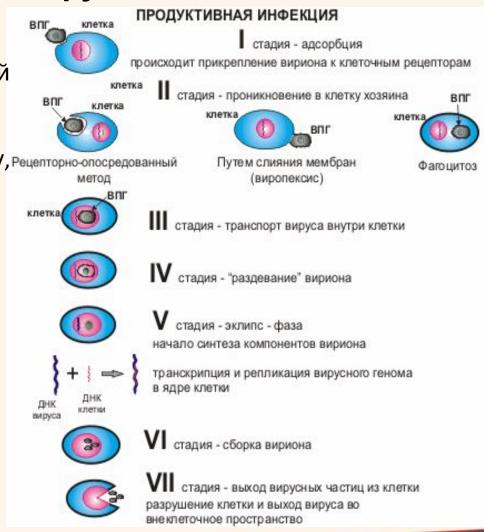





Рис. Строение оболочечных вирусов с икосаэдрическим (а) и спиральным (б) капсилом

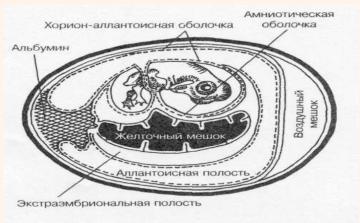

#### Типы взаимодействия вируса с клеткой:

- ✔Продуктивный тип взаимодействия завершается воспроизводством вирусного потомства многочисленных вирионов и гибелью зараженных клеток(цитоцидное действие). Некоторые вирусы выходят из клеток, не разрушая их (нецитоцидное действие);
- ✔Абортивный тип взаимодействия не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов;
- ✔Интегративный тип взаимодейсвтия, или вирогения, характеризуется встраиванием (интеграцией), вирусной ДНК в виде провируса в хромосому клетки и их совместной репликацией.



#### Этапы взаимодействия вируса с клеткой:

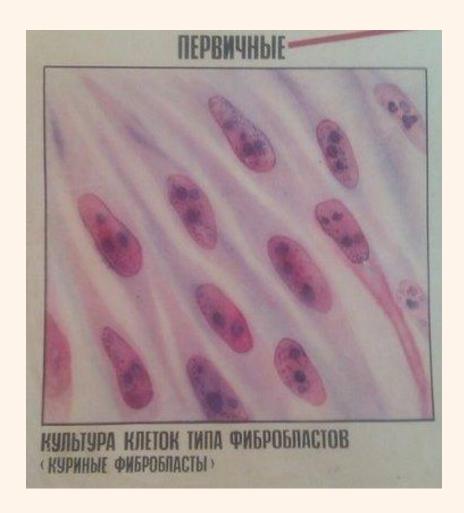
- Адсорбция вириона на клеточной мембране;
- 2. Проникновение вириона в клетку, Рецепторно-опосредованный «раздевание» и высвобождение вирусного генома (депротеинизация вируса);
- 3. Синтез вирусных компонентов;
- 4. Сборка реплицированной нуклеиновой кислоты и новых капсидных белков;
- 5. Выход вирусного потомства из клетки.






#### Микробиологическая Вирусологическая Вирусологическая

- 1. Накопление вирусологического материала. Для культивирования вирусов используют:
  - ✓ культуры клеток
  - ✓ культуры тканей
  - ✓ куриные эмбрионы
  - ✓ чувствительных лабораторных животных







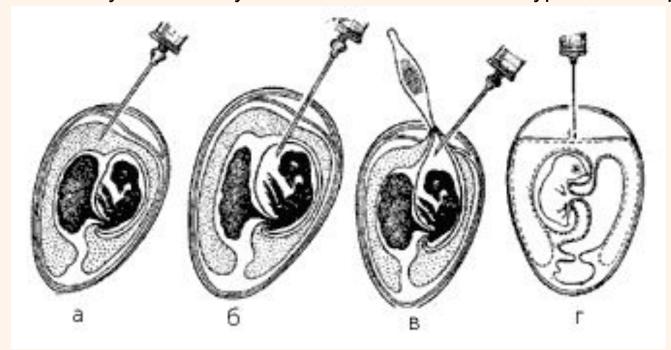

Культуры клеток представляют собой соматические или эмбриональные клетки животных или человека, культивируемые в лабораторных условиях. Их подразделяют на первичные (неперевиваемые), полуперевиваеые и перевиваемые.

Первичные культуры клеток получают непосредственно из тканей многоклеточных организмов. Такие клетки обычно не способны к делению (неперевиваемые) и используются однократно.





К полуперевиваемым клеткам относятся диплоидные клетки различных тканей и органов, способные к ограниченному размножению in vitro.

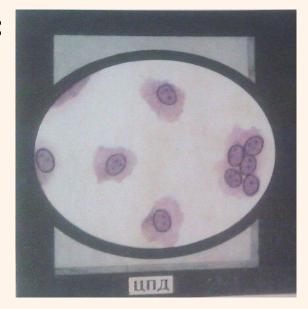

Перевиваемые культуры клеток готовят из злокачественных линий клеток, обладающих способностью неограниченно размножаться in vitro в определенных условиях. К ним относятся, например, злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки и др.

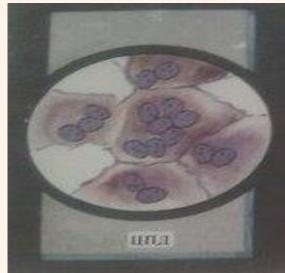






**Куриные эмбрионы.** Для культивирования используют 8-12-дневные куриные эмбрионы. Для заражения куриных эмбрионов исследуемый материал вводят в аллантоисную и амниотическую полости, на хорионаллантоисную оболочку или в желточный мешок куриного эмбриона.





Методы заражения куриных эмбрионов: **a** – заражение в полость аллантоиса; **б** – заражение в амнион закрытым способом; **в** – заражение в амнион открытым способом; **г** – заражение на хорионаллантоисную



#### Методы индикации вирусов:

О размножении (репродукции) вирусов в a. культуре клеток СУДЯТ цитопатическому действию может быть обнаружено которое микроскопически по морфологическим изменениям клеток. Часть таких клеток погибает и отслаивается от стенок пробирки. Вирусные частицы, освобождающиеся при разрушении одних клеток, инфицируют другие, которые через некоторое время также В результате погибают. вместо СПЛОШНОГО клеточного монослоя остаются лишь отдельные клеточные островки.







b. Некоторые вирусы можно обнаружить и идентифицировать <u>по</u> <u>включениям</u>, которые они образуют в ядре или цитоплазме заражённых клеток.

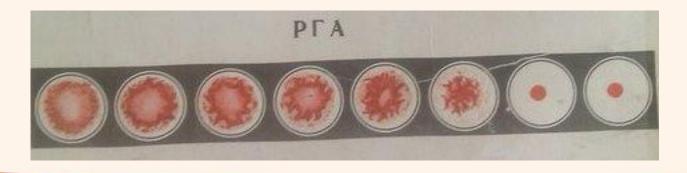


с. ЦПД вирусов можно также продемонстрировать с помощью «цветной пробы»: метаболически активные клетки культуры в ходе жизнедеятельности выделяют кислые продукты, что вызывает изменение индикаторов, присутствующего в культуральной среде.





#### d. Реакция гемадсорбции


применяют ДЛЯ индикации гемагглютинирующих вирусов. Реакция основана на способности поверхности клеток, в которых репродуцируются такие вирусы, адсорбировать эритроциты. Для постановки реакции гемадсорбции культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На поверхности пораженных вирусами прилипшие клеток остаются эритроциты.



е. <u>Реакцию гемагглютинации (РГА)</u> применяют для обнаружения гумагглютинирующих вирусов в культуральной жидкости зараженной культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона. Для постановки РГА к исследуемому материалу добавляют взвесь эритроцитов. В присутствие вирусов происходит агглютинация эритроцитов.

Результаты реакции учитывают через 40 минут после оседания эритроцитов:

- (+) выраженная гемагглютинация-тонкая пленка склеившихся эритроцитов на дне пробирки, имеющая вид зонтика,
- (-) резко очерченный осадок эритроцитов.

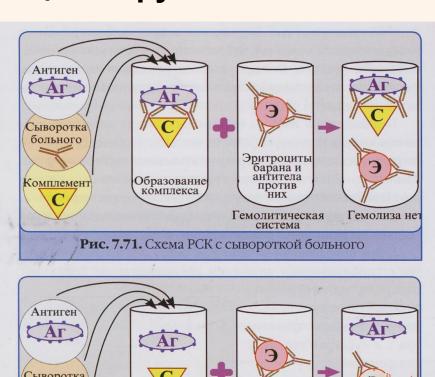




f. Более точным количественным методом учета отдельных вирусных частиц является метод бляшек. Культуру клеток заражают вирусом и покрывают тонким слоем агара. После инкубирования посевов в течение суток на поверхности агара появляются просветленные участки определенной формы (бляшки), представляющие собой участки погибших клеток в сплошном монослое культуры клеток. Титр вируса, установленный этим методом, выражают числом бляшкообразующих единиц (БОЕ) в 1 мл.






#### Методы идентификации вирусов:

## Реакция связывания комплемента

МЕДИЦИНСКАЯ АКАДЕМИЯ

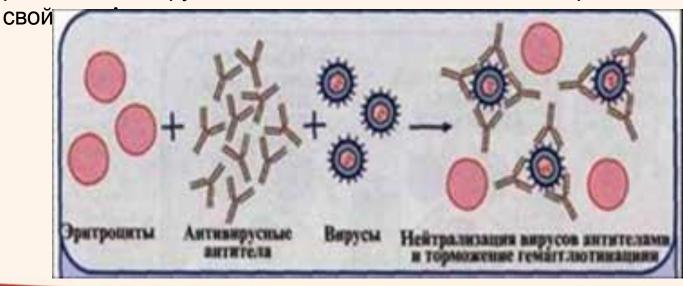
Реакция протекает в две фазы. *Первая фаза* - взаимодействие антигена и антител при обязательном участии комплемента.

Вторая - выявление результатов реакции при помощи индикаторной гемолитической системы барана (эритроциты гемолитическая сыворотка). Разрушение эритроцитов сывороткой гемолитической происходит только В случае присоединения комплемента гемолитической системе. Если же комплемент адсорбировался ранеельска Наларст Комплексе антитело, то гемолиз эритроцитов He наступает.





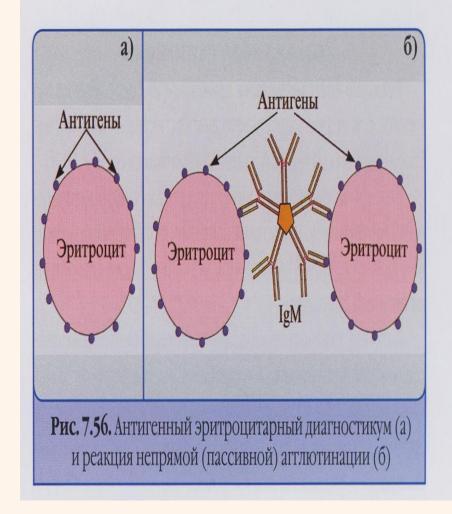
*Результат* опыта оценивают, отмечая наличие или отсутствие гемолиза во всех пробирках. Реакцию считают положительной при полной задержке гемолиза, когда жидкость в пробирке бесцветна и эритроциты оседают на дно, отрицательной - при полном лизисе эритроцитов, когда жидкость интенсивно окрашена («лаковая» кровь). Степень задержки гемолиза оценивают в зависимости от интенсивности окраски жидкости и величины осадка эритроцитов на дне (++++, +++, ++, +).


#### Основной опыт РСК

| Фаза<br>реакци<br>и              | Ингредиенты, участвующие<br>в реакции | Номера проб  |            |       |
|----------------------------------|---------------------------------------|--------------|------------|-------|
|                                  |                                       | 1, опыт      | 2, KC      | 3, KA |
|                                  | 1. Исследуемая сыворотка,<br>мл       | 0,5          | 0,5        | 1.5   |
| 1.                               | 2. Антиген в раб. дозе, мл            | 0,5          | 56 ASS     | 0,5   |
|                                  | 3. Комплемент в раб. дозе, мл         | 0,5          | 0,5        | 0,5   |
|                                  | 4. Изотонический раствор, мл          | Œ.           | 0,5        | 0,5   |
|                                  | Инкубация пр                          | н 37 С в теч | ение 30 мі | и     |
| 2. 5. Гемолитическая система, мл |                                       | 1,0          | 1,0        | 1,0   |
|                                  | Инкубация пр                          | н 37 С в теч | ение 30 мі | и     |
| Резулі                           | ьтат:                                 |              |            |       |
| Ус                               | ловные обозначения: (+) з             | адержка гез  | солиза;    | (-)   |



#### Реакция торможения гемагглютинации


Принцип реакции основан на способности АТ связывать различные вирусы и нейтрализовать их, лишая возможности агглютинировать эритроциты. Визуально этот эффект и проявляется в «торможении» гемагглютинации. РТГА применяют при диагностике вирусных инфекций для выявления специфических антигемагглютининов и идентификации различных вирусов по их гемагглютининам, проявляющим





#### Реакция пассивной (непрямой) гемагглютинации

Под непрямой, или пассивной, агглютинацией понимают реакцию, в которой антитела взаимодействуют с антигенами, предварительно адсорбированными инертных частицах. В реакции пассивной гемагглютинации (РПГА) в качестве носителя используют эритроциты. Нагруженные антигеном эритроциты склеиваются присутствии специфических антител данному антигену и выпадают в осадок. Постановка. В лунках полистироловых планшетов готовят ряд последовательных разведений сыворотки. В предпоследнюю вносят - 0,5 ЛУНКУ ΜЛ заведомо положительной сыворотки и в последнюю 0,5 мл физиологического раствора (контроли). Затем во все лунки добавляют по 0,1 мл разведенного эритроцитарного диагностикума, встряхивают и помещают в термостат на





Учет. В положительном случае эритроциты оседают на дне лунки в виде ровного слоя клеток со складчатым или зазубренным краем (перевернутый зонтик), в отрицательном - оседают в виде пуговки или колечка.







#### Вирусоскопический метод

#### Осуществляю диагностики

- 1. Электронной микроскопии
- 2. Люминесцентной микроскопии
- 3. Световой микроскопии

#### Электронная микроскопия

позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Световые лучи в таких микроскопах заменяют поток электронов, имеющий при определенных условиях длину волны около 0,005 нм, т.е. почти в 100000 раз короче длины волны видимого света.





# Люминесцентная микроскопия основана на явлении фотолюминесценции. По сравнению с обычными методами обладает рядом возможностью исследования живых микроорганизмов и обнаружения их в исследуемом материале в небольших концентрациях

высокой

степени

Световая микроскопия позволяет выявить включения вирусов, которые они образуют в ядре или цитоплазме заражённых клеток. Для этого необходимо предварительно окрасить мазок по методу Романовского-Гимзе или серебрением по Морозову.







вследствие

контрастности.

### Серологическая диагностика

вирусных инфекций основана на выявлении в крови больного противовирусных антител в серологических реакциях с использованием специфических вирусных антигенов - диагностикумов или специфицеских тест – систем.

В основе большинства серологических реакций при вирусных инфекциях лежат реакция взаимодействия вирусных антигенов и гомологичных антител в жидкой среде.

РСК, РТГА, РНГА, РИФ, ИФА, РИА.

