Лекция 4

Средства измерений. Метрологические характеристики

• Зам.директора ИЦЭ, доц. Каф. ГСХ – к.т.н., Хан Вениамин Владимирович Тел.факс (3952)405217

e-mail: khan@istu.edu

Средства измерений

Средство измерений – техническое средство, используемое при измерениях и имеющее нормированные метрологические характеристики, воспроизводящее и(или) хранящее единицу ФВ, размер которой принимается неизменным в течение известного интервала времени.

Виды СИ по РМГ-29-99

- все средства измерений делятся на пять видов:
- о меры,
- о измерительные преобразователи,
- о измерительные приборы,
- о - измерительные установки и
- о измерительные системы.

Меры

Меры — это СИ, воспроизводящие или хранящие физическую величину заданного размера. Меры могут быть **однозначными**, воспроизводящими одно значение физической величины (гиря, калибр на заданный размер, образцы твердости, шероховатости, катушка сопротивления, нормальный элемент, воспроизводящий значение ЭДС), и **многозначными** — для воспроизведения плавно или дискретно ряда значений одной и той же физической величины (измерительный конденсатор переменной емкости, набор конечных мер, магазин емкостей, индуктивности и сопротивления, измерительные линейки)

Измерительные преобразователи

Измерительные преобразователи — СИ, предназначенные для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не доступной для непосредственного восприятия наблюдателем. Это термопары, измерительные трансформаторы и усилители, преобразователи давления. По месту, занимаемому в измерительной цепи, они делятся на первичные, промежуточные и т. п

Преобразователи физического рода

Преобразователи физического рода сигнала используются тогда, когда измеряемая величина неудобна для непосредственного измерения. Так многие неэлектрические величины предварительно преобразовываются в электрические (механическое перемещение или угловое вращение в электрическую величину) или одни электрические величины в другие (сопротивление в напряжение, термоэлектрический преобразователь, преобразователь напряжение-частота).

Функциональные преобразователи

• Функциональные преобразователи обеспечивают необходимую зависимость между информативными параметрами входного и выходного сигналов. Такие преобразователи называют: дифференцирующий, интегрирующий, суммирующий, логарифмирующий и т.п.

Виды преобразователей

- *Масштабные* преобразователи. К ним относятся : делитель, усилитель, трансформатор тока (напряжения).
- Согласующие преобразователи (согласующий трансформатор, эмиттерный повторитель).

Преобразователи

• По месту включения в общей цепи преобразователи делят на *первичные*, к которым подводится измеряемая величина, *промежуточные и передающие*, предназначенные для дистанционной передачи сигналов.

Измерительные приборы

Измерительный прибор - СИ, предназначенное для переработки сигнала измерительной информации в другие, доступные для непосредственного восприятия наблюдателем формы. Различают приборы прямого действия (амперметры, вольтметры, манометры) и приборы сравнения (компараторы).

Измерительная установка

• Измерительная установка— совокупность функционально объединенных СИ и вспомогательных устройств, расположенных в одном месте. Например, поверочные установки, установки для испытания электротехнических, магнитных и других материалов

Измерительная система

Измерительная система — это комплекс СИ и вспомогательных устройств с компонентами связи (проводные, телевизионные и др.), предназначенный для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

Виды СИ -2

- По используемым физическим процессам ИУ разделяют на механические, электромеханические, электронные, оптоэлектронные и т.п.
- По физической природе измеряемой величины различают вольтметры, амперметры, термометры, манометры, уровнемеры, влагомеры и т.д.

Виды СИ -3

- по способу обработки сигнала приборы делятся на аналоговые и цифровые
- показывающие, допускающие только отсчитывание показаний, и регистрирующие, в которых предусмотрена автоматическая регистрация показаний.

Образцовые и рабочие СИ

• По точности ИУ делят на *образцовые*, используемые для поверки других ИУ и утвержденные в качестве образцовых, и *рабочие*, используемые непосредственно в практических измерениях, не связанных с передачей размера единиц.

Метрологические характеристики СИ

- Для оценки пригодности СИ к измерениям в известном диапазоне с известной точностью используются метрологические характеристики (МХ). Функции МХ:
 - установление точности измерений;
 - достижение взаимозаменяемости СИ, возможности сопоставления СИ и выбора нужных СИ по точности и др. характеристикам;
 - определение погрешностей;
 - оценка технического состояния СИ при поверке.

Основные нормируемые метрологические характеристике СИ по ГОСТ 8.009-72

- диапазон измерений;
- пределы измерений, пределы шкалы;
- цена деления равномерной шкалы аналогового прибора, при неравномерной шкале минимальная цена деления;
- Чувствительность отношение изменения сигнала Ду на выходе СИ к вызвавшему его изменению сигнала Дх на входе
- выходной код, число разрядов кода, номинальная цена единицы наименьшего разряда цифровых СИ;
- погрешность СИ;

Класс точности

• Обобщенная характеристика данного типа средств измерений, отражающая уровень их точности, выражаемая пределами допускаемых основных и дополнительных погрешностей, а также другими характеристиками, влияющими на точность

Класс точности

• Класс точности характеризует в каких пределах находится погрешность данного типа средств измерений, но не является непосредственным показателем точности измерений, выполненных с помощью этих средств. Классы точности устанавливаются стандартами, содержащими технические требования к средствам измерений, подразделяемым по точности.

Метрологические характеристики, определяемые классами точности

- Нормирование МХ по ГОСТ 8.401-80
- Пределы допускаемых *основной* и *дополнительной* погрешностей выражают в форме *приведенных*,

$$\gamma = A * 10^n$$

• относительных

$$\delta = A * 10^n$$

- *или абсолютных погрешностей* в зависимости от характера измерения погрешностей в пределах диапазона измерений, а также от условий применения и назначения средств измерений конкретного вида.
- **A** =1; 1,5; (1,6); 2; (3); 4; 5; 6
- **n**= 1; 0; -1; -2; ...

ПОСРЕШНОСТИ ИЗМЕРЕНИЙ И СРЕДСТВ ИЗМЕРЕНИЙ

$$x = x_r + \Delta x$$

Погрешность результата измерения Δ — это отклонение результата измерений (Xe) от истинного значения X и измеряемой величины .

Абсолютная погрешность

$$\Delta X = Xe - Xu$$

Относительная погрешность

$$δ$$
= $ΔX / Xu = (Xe - Xu)/Xu$

Приведенная погрешность

$$\gamma$$
= ± (Δ Xe/Xn) * 100 %

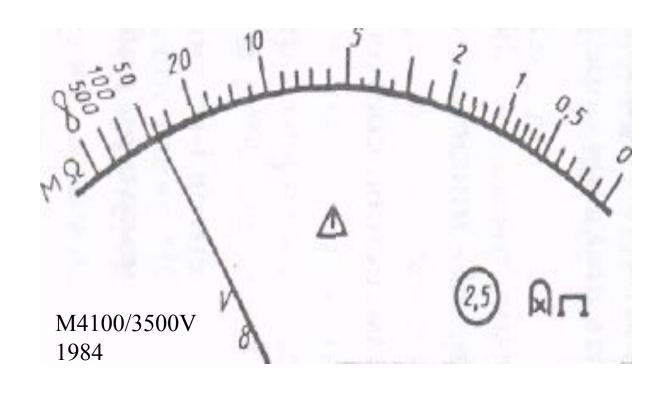
Xn - нормирующее значение

Обозначения классов точности

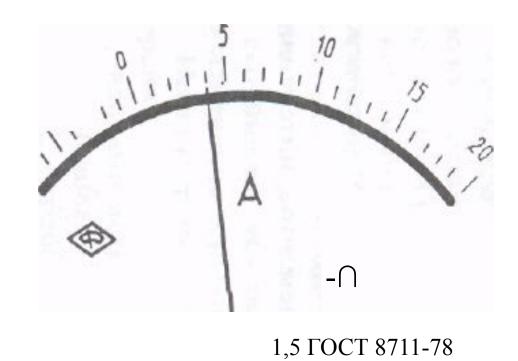
В зависимости от формы выражения погрешности классы точности могут выражаться заглавными буквами латинского алфавита (например, N, M, C) или римскими цифрами (I, II, III и т.д.) с добавлением условных знаков, смысл которых раскрывается в нормативно-технической документации. При этом меньшие пределы погрешности должны соответствовать буквам, находящимся ближе к началу алфавита, или меньшим цифрам. Если же класс точности обозначается арабскими цифрами с добавлением какоголибо условного знака, то эти цифры непосредственно устанавливают оценку снизу точности показаний средств измерений.

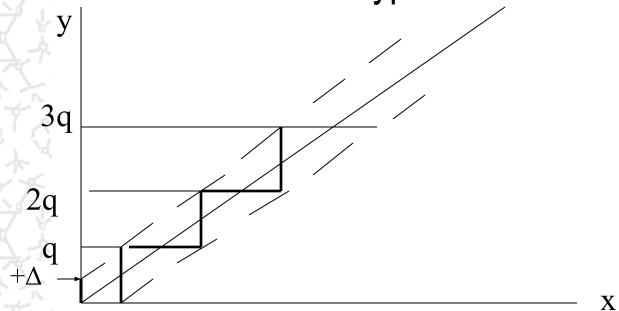
Обозначения классов точности

7	Форма выражения погрешностиII	Предел допускаемой основной погрешности, %	Обозначение кла	сса точности
f			в документации	на средстве измерений
	Приведенная	γ□ =±1,5%	класс точн. 1,5	1,5
59 -	погрешность ү	$\gamma \square = \pm 0.5\%$	класс точн. 0,5	0,5
	Относительная	$\delta = \pm [c + d(\frac{x_0}{x} - 1)]$	0,02/0,01 (c/d)	0,02/0,01 0
f	погрешность δ	$\delta = \pm 0.5\%$	0,5	(0,5)
>		$\Delta = \pm a$, [x]	Класс точн. М	M 5
4	Абсолютная погрешность Δ	$\Delta = \pm (a+bx), [x]$	Класс точн. III	III



Пример 3 – амперметр класса точности 0.02/0,01 с равномерной шкалой





Погрешности цифровых СИ

 Погрешностью цифровых СИ и дискретных преобразователей является погрешность квантования, которая вносится округлением значения измеряемой величины и номинального значения

Квантование погрешности цифровых СИ

• q – шаг квантования по уровню.

Основные и дополнительные погрешности

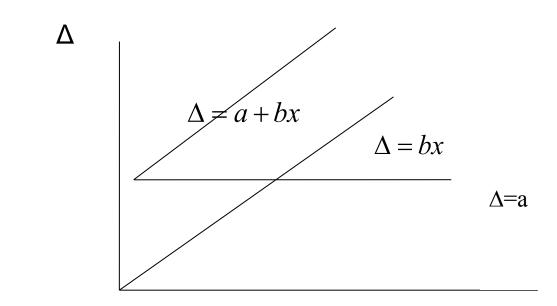
- Основной называется погрешность средства измерений, применяемого в нормальных условиях
- Составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального его значения или вследствие ее выхода за пределы нормальной области значений, называется дополнительной погрешностью.

Нормальные значения

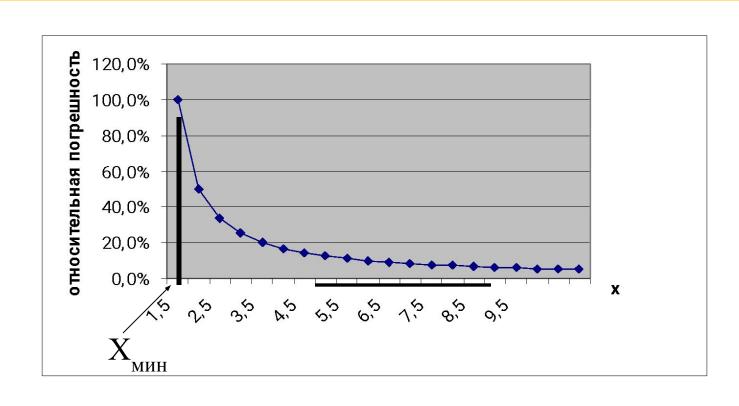
- температура окружающей среды (293<u>+</u>5) К;
- относительная влажность (65<u>+</u>15) %;
- атмосферное давление (100<u>+</u>4) кПа (750<u>+</u>30 мм рт. ст.);
- напряжение питающей электрической сети (220±4,4) В с частотой (50±0,5)Гц.

Полная погрешность

• Суммарная абсолютная погрешность при влияющих факторах z_i в общем случае равна:


$$\Delta_s = \Delta_0 + \sqrt{\sum_{i=1}^n \Delta_i^2}$$

 Δi = дополнительная погрешность, вызванная изменением i-го влияющего фактора z_i


Составляющие погрешности СИ

- Аддитивная
- Мультипликативная

Компоненты погрешности

Относительная погрешность

Аддитивная погрешность

$$\Delta = a$$

$$\mathcal{S} = \frac{\Delta}{x}$$

Мультипликативная погрешность

$$\Delta = +cx$$

$$\delta = const = c$$

Общий случай

$$\Delta = a + bx$$

$$\delta = \pm \left[c + d\left(\frac{x_0}{x} - 1\right)\right]$$

$$c = \left(b + \frac{a}{x_k}\right)$$

$$d = a$$

Порог чувствительности

Значение измеряемой величины, х_{тіп} при котором достигается

$$\delta = 100\%$$
, 20%, 5%, 2%

называется порог чувствительности
Динамический диапазон — метрологическая
характеристика средства измерения, равная
отношению максимального значения шкалы прибора
х_к к порогу чувствительности

$$\mathcal{A} = \frac{x_k}{x_{min}}$$