
Lecture 7
■ The second law of thermodynamics.
■ Heat engines and refrigerators.
■ The Carnot cycle. 
■ Entropy.



Irreversibility of processes

■ There exist many processes that are 
irreversible:

■ the net transfer of energy by heat is always 
from the warmer object to the cooler object, 
never from the cooler to the warmer

■ an oscillating pendulum eventually comes to 
rest because of collisions with air molecules 
and friction. The mechanical energy of the 
system converted to internal energy in the air, 
the pendulum, and the suspension; the 
reverse conversion of energy never occurs.



Heat Engines
• A heat engine is a device 

that takes in energy by 
heat and, operating in a 
cyclic process, expels a 
fraction of that energy by 
means of work. 

• Weng – work done by the 
heat engine 

• Qh – heat, entering the 
engine. 

• Qc - energy, leaving the 
engine.



Thermal Efficiency of a Heat Engine



Heat Pumps or Refrigerators

■ In a heat engine a fraction of heat from the 
hot reservoir is used to perform work.

■ In a refrigerator or a heat pump work is 
used to take heat from the cold reservoir and 
directed to the hot reservoir.



Refrigerator

• W – work done 
on the heat pump 

• Qh – heat, put 
into the hot 
reservoir. 

• Qc - heat, taken 
from the cold 
reservoir.



Coefficient of performance of a refrigerator

■ The effectiveness of a refrigerator is 
described in terms of a number called the 
coefficient of performance (COP).

■ COP =  Qc /(Qh - Qc) = Qc /W

■ Good refrigerate COP is about 5-6.



The Second Law of Thermodynamics

■ The Kelvin form: 
It is impossible to construct a cyclic 
engine that converts thermal energy 
from a body into an equivalent amount 
of mechanical work without a further 
change in its surroundings.

■ Thus it says that for a heat engine it’s 
impossible for QC=0, or heat engine 
efficiency e=100%.



The Second Law of Thermodynamics

■ The Clausius form:
It is impossible to construct a cyclic 
engine which only effect is to transfer 
thermal energy from a colder body to a 
hotter body. 

■ Thus for refrigerator it’s impossible that W=0, 
or COP = ∞.



Carnot cycle

1.A-B isothermal 
expansion

2. B-C adiabatic 
expansion

3. C-D isothermal 
compression

4. D-A adiabatic 
compression



Carnot Efficiency

■ Using the equation of state and the first law of 
thermodynamics we can easily find that (look 

Servay p.678; Fishbane p.581):

■ Let’s prove it: During the isothermal 
expansion (process A → B), the work done by 
a gas during an isothermal process:



• So, the work done on a gas during an 
isothermal process A → B is:

(1)

• Similarly, for isothermal C → D:

(2)

Deviding (2) over (1):

  (3)



For adiabatic processes:

So, statement (3) gives us:



So, using the last expression and the expression for efficiency:

Thus we have proved that the Carnot Efficiency equals

1. Carnot Engine does not depend on the use of the ideal gas as 
a working substance.

2. Carnot Engine is Reversible – it can be used as a refrigerator 
or heat pump.

3. Carnot Cycle is the most efficient cycle for given two 
temperatures Th and Tc.



Carnot  theorem

■ The Carnot engine is the most 
efficient engine possible that 
operates between any two given 
temperatures. 

(look Servay p.675; Fishbane p.584)



Carnot  Theorem  Proof

Let’s prove it from the contrary: 
let’s have Carnot engine A to be 
more efficient than Carnot engine 
B, they run together, engine B is 
operating in reverse. We adjust A 
to take Qh and B to give the same

Qh to the hot reservoir Th. Thus we get QcB – 
QcA=ΔW. It means that we take energy from cold 
reservoir to produce work ΔW. But it violates the 
second law of thermodynamics.



Entropy

■ Measures the amount of disorder in thermal system.
■ It is a function of state, and only changes in entropy 

have physical significance. 
■ Entropy changes are path independent. 
■ Another statement of the Second Law of 

Thermodynamics: The total entropy of an isolated 
system that undergoes a change cannot decrease.

■ For infinitesimal changes:



Entropy change calculations

■ Entropy is a state variable, the change in 
entropy during a process depends only on the 
end points and therefore is independent of the 
actual path followed. Consequently the 
entropy change for an irreversible  process 
can be determined by calculating the entropy 
change for a reversible process that connects 
the same initial and final states.



• So for infinitesimal changes:

• The subscript r on the quantity dQr means that the transferred 
energy is to be measured along a reversible path, even though 
the system may actually have followed some irreversible path. 
When energy is absorbed by the system, dQr is positive and 
the entropy of the system increases. When energy is expelled 
by the system, dQr is negative and the entropy of the system 
decreases.

• Thus, it’s possible to choose a particular reversible path over 
which to evaluate the entropy in place of the actual path, as 
long as the initial and final states are the same for both paths.



Change of Entropy in a Carnot Cycle

■ Carnot engine operates between the temperatures Tc 
and Th. In one cycle, the engine takes in energy Qh 
from the hot reservoir and expels energy Qc to the 
cold reservoir. These energy transfers occur only 
during the isothermal portions of the Carnot cycle 
thus the constant temperature can be brought out in 
front of the integral sign in expression

■ Thus, the total change in entropy for one cycle is



Reversibility of Carno Cycle

■ Using equality, proved for the Carnot Cycle (slide N13):

We eventually find that in Carno Cycle:
ΔS=0



Reversible Cycle

■ Now consider a system taken through an arbitrary (non-Carnot) 
reversible cycle. Because entropy is a state variable —and 
hence depends only on the properties of a given equilibrium 
state —we conclude that 

ΔS=0
for any reversible cycle. In general, we can write this condition 
in the mathematical form

■ the symbol        indicates that the integration is over a closed 
path.



Ideal Gas Reversible Process
■ Suppose that an ideal gas undergoes a quasi-static, 

reversible process from an initial state Ti, Vi to a final 
state Tf, Vf . 
1st  law of thermodynamics: dQr = ΔU + W,
Work: W=pdV,
Internal Energy change:  ΔU=nCvdT, (n – moles number)

Equation of state for an Ideal Gas: P=nRT/V,
Thus:  dQr = nCvdT + nRTdV/V
Then, dividing the last equation by T, and integrating we 

get the next formula:



- This expression demonstrates that ΔS 
depends only on the initial and final states and 
is independent of the path between the states. 
The only claim is for the path to be reversible. 

- ΔS can be positive or negative
- For a cyclic process (Ti= Tf, Vi = Vf), ΔS=0. 

This is further evidence that entropy is a state 
variable.



The Second Law of Thermodynamics

■ The total entropy of an isolated system 
that undergoes a change cannot decrease.

■ If the process is irreversible, then the total 
entropy of an isolated system always 
increases. In a reversible process, the total 
entropy of an isolated system remains 
constant.



Microscopic States

■ Every macrostate can be realized by a number of 
microstates.

■ Each molecule occupies some microscopic volume Vm. 
The total number of possible locations of a single 
molecule in a macroscopic volume V is the ratio 

w =V/Vm. 
■ Number w represents the number of ways that the 

molecule can be placed in the volume, or the number of 
microstates, which is equivalent to the number of 
available locations. 

■ If there are N molecules in volume V, then there are 

W = wN = (V /Vm)N 

microstates, corresponding to N molecules in volume V.



Entropy on a Microscopic Scale

■ Let’s have an ideal gas expanding from Vi to Vf. 
Then the numbers of microscopic states are:

■ For initial state: Wi = wi
N = (Vi /Vm)N .

■ For final state:  Wf = wf
N = (Vf /Vm)N .

■ Now let’s find their ratio:

■ So we canceled unknown Vm.



After further transformations:

n – number of moles, R=kbNa.

Then we use the equation for isothermal expansion 
(look Servay, p.688):

Using the expression from the previous slide 
we get:



Entropy is a measure of Disorder

■ The more microstates there are that correspond to 
a given macrostate, the greater is the entropy of 
that macrostate. 

■ Thus, this equation indicates mathematically that 
entropy is a measur measure of disorder. Although 
in our discussion we used the specific example of 
the free expansion of an ideal gas, a more rigorous 
development of the statistical interpretation of 
entropy would lead us to the same conclusion.



Independent Study

■ Reynold’s number, Poiseuille flow, viscosity, 
turbulence (Fishbane p.481, Lecture on 
physics Summary by Umarov).

■ Entropy Change in a Free Expansion. (Servay 
p.688).

■ Entropy Change in Calorimetric Processes 
(Servay p.689)


