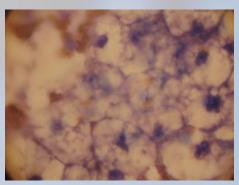
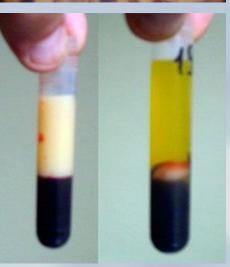


Патофизиология липидного обмена

доцент кафедры патофизиология ПМГМУ им. И.М. Сеченова к.м.н. Манасова 3.Ш.

липидф3ы


липидозы


(греч. lipos –жир, os – патологический процесс)

- типовая форма патологии липидного обмена, характеризующаяся расстройством метаболизма липидов:

- 🛮 в клетках (паренхиматозные липидозы)
- в жировой клетчатке (ожирение, истощение, липодистрофии)
- В крови (дислипидемии)
- в стенках артерий (атеросклероз, артериосклероз)

ОЖИРЕНИЕ

* Избыточное (патологическое) накопление жира в организме

в виде триглицеридов

* с увеличением массы тела более чем на 20-30% выше нормальной.

* Распространённость:

Европа — 20-60% населения. Россия — более 60%.

* Факторы риска:

- ИБС (> 1,5 раза)
- Атеросклероза (> 2 раза)
- Гипертонической болезни (> 2 раза)
- Сахарного диабета(> 4 раза)
- Новообразований (?)

ОЖИРЕНИЕ

- типовая форма патологии, характеризующаяся избыточным отложением триглицеридов в организме вследствие абсолютного по сравнению с нормой) или относительного (по сравнению с липолизом) увеличения липогенеза в адипоцитах

виды ожирения:

А. По происхождению

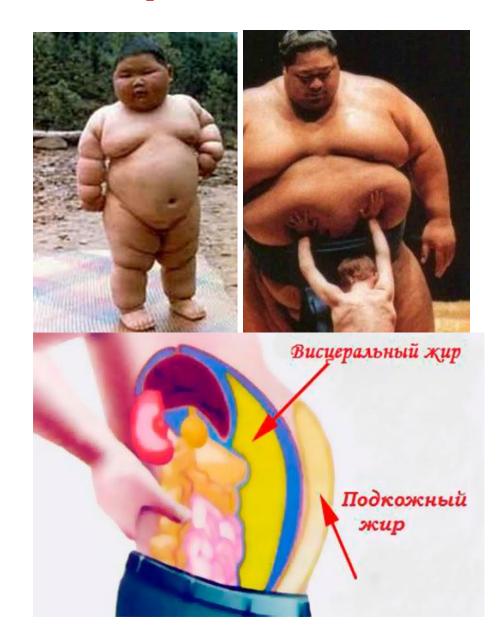
- Первичное (полигенная форма патологии)
- □ Вторичное (центрогенное, гипоталамическое, эндокринное, обменное)
- Б. По механизму увеличения массы жировой ткани:
- □Гиперпластическое (характеризуется <u>увеличением количества</u> адипоцитов; развивается, как правило, у детей; резистентно к терапии)
- □Гипертрофическое (характеризуется <u>увеличением размеров</u> адипоцитов; развивается, как правило, у взрослых, поддается традиционной терапии)

□Смешанное

Причины ожирения

<u>ПЕРВИЧНОГО</u>

-нарушение функции системы липостата:


гипоталамус — адипоциты (нейропептид Y - лептин)


ВТОРИЧНОГО

-избыточная калорийность пищи

-снижение интенсивности катаболизма

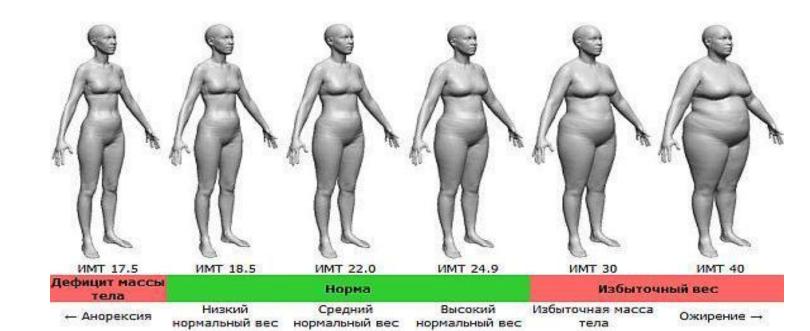
-сниженные энергозатраты организма

- * Дефицит эффектов лептина приводит к:
 - нарастающему чувству голода
 - ожирению

НЕЙРОПЕПТИД

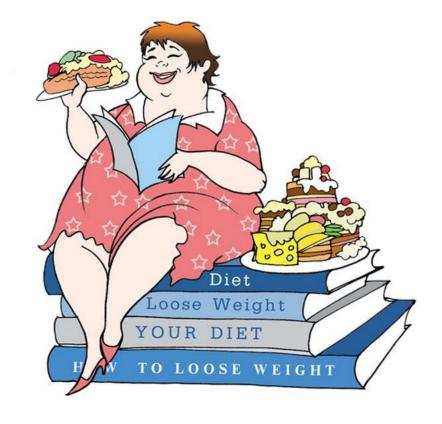
НЕЙРОМЕДИАТОР (заднелатерального вентрального ядра гипоталамуса п. arcuate)

СТИМУЛИРУЕТ ЧУВСТВО ГОЛПОВЫШАЕТ АППЕТИТ


- * Избыток эффектов нейропептида У приводит к:
 - нарастающему чувству голода
 - Ожирению

Ожирение (ИМТ)

ИМТ = <u>Масса тела (кг)</u> Рост (м²⁾


Нормальный ИМТ= 20.0 - 24.9Избыточная масса тела= 25.0 - 26.9I степень ожирения= 27.0 - 30.0II степень ожирения= 30.0 - 40.0III степень ожирения- более 40.0

Ожирение (механизмы развития)

- □ Ф липогенез избыточное,
 превышающее
 энергозатраты, потребление
 углеводов, жиров
- □ Ф липолиз недостаточное использование жира при нормальной функции пищевого центра

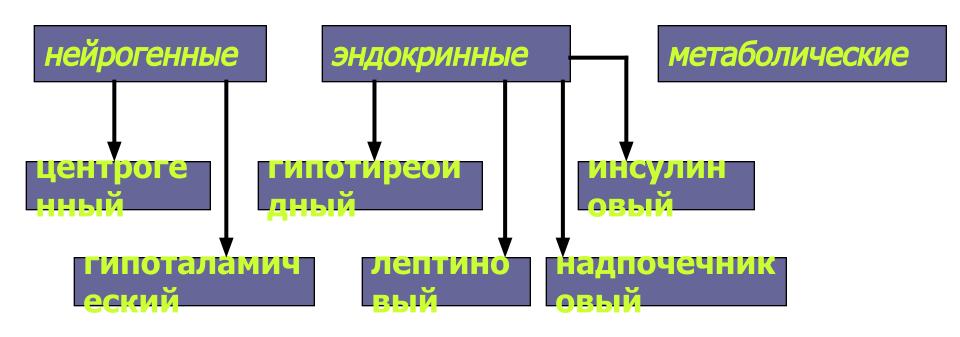
□ гиперинсулинизм - активация синтеза триглицеридов в жировой ткани

Типы ожирения

наиболее опасен

Признак ожирения, опасного для здоровья объем талии

у женщин ≥ 88 см у мужчин ≥ 102 см

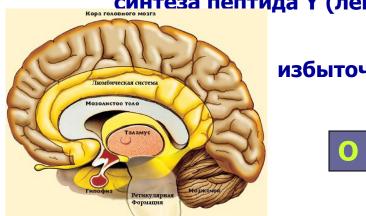


Метаболический синдром - что это?

Центральное ожирение + 2 дополнительных критерия = метаболический синдром.

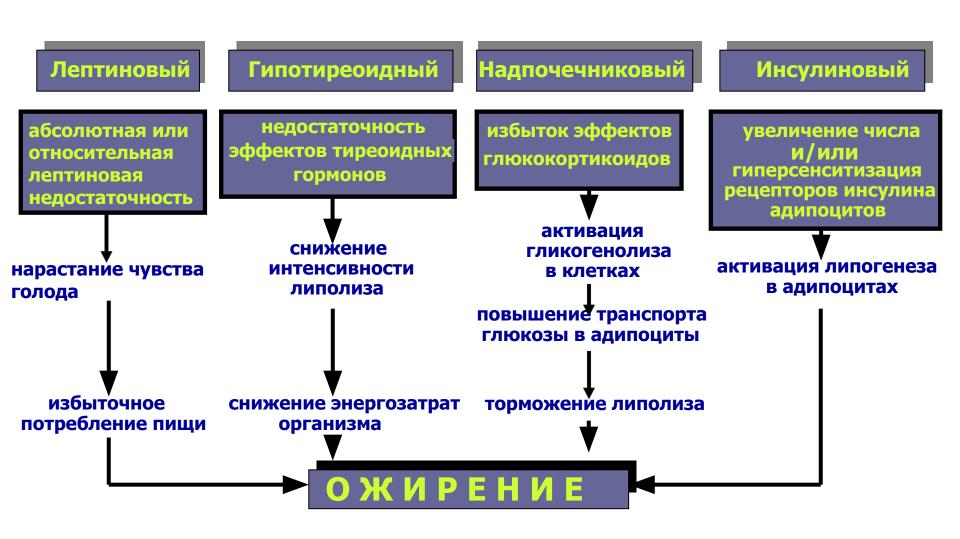
Основные звенья патогенеза ожирения

Нейрогенный центрогенный (корковый психогенный) механизм ожирения

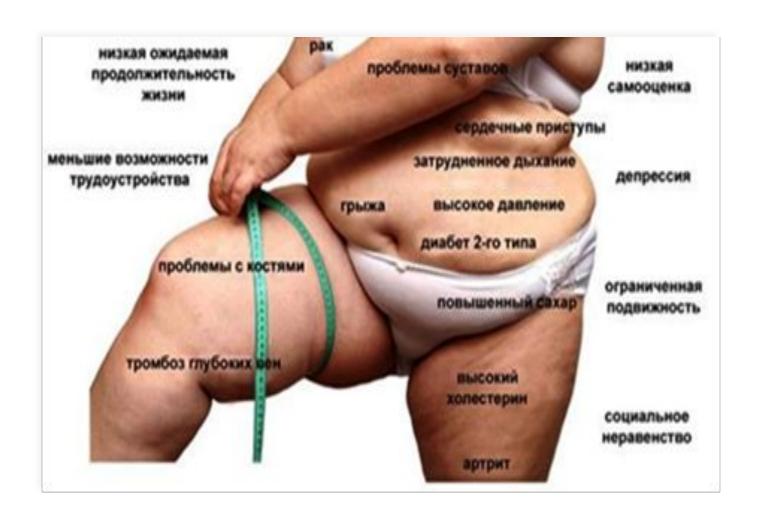

Нейрогенный гипоталамический (диэнцефальный, "подкорковый") механизм ожирения

Повреждение нейронов гипоталамуса

повышение синтеза и секреции нейромедиатора - пептида Ү


стимуляция чувства голода, повышение аппетита

гипосенситизация рецепторов гипоталамуса к ингибиторам синтеза пептида Y (лептину и др.)


Основные эндокринные механизмы ожирения

Метаболический механизм ожирения

Последствия ожирения

ИСТОЩЕНИЕ

- * Патологическое снижение массы жировой ткани и массы тела
- * ниже нормы (ИМТ $< 18 \, \text{кг/м}^2$).

* ДЕФИЦИТ ЖИРОВОЙ ТКАНИ ≥ 20-25%.

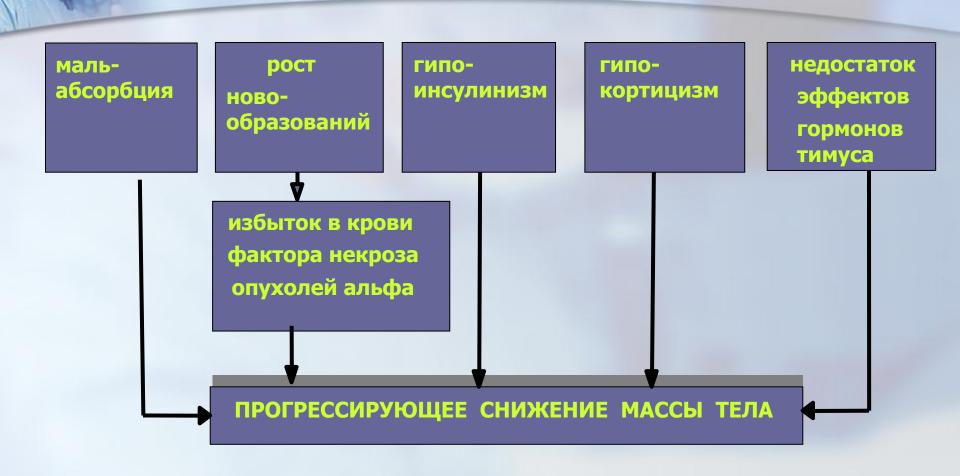
Кахексия (истощение)

(греч. kakos - плохой, hexis - состояние)

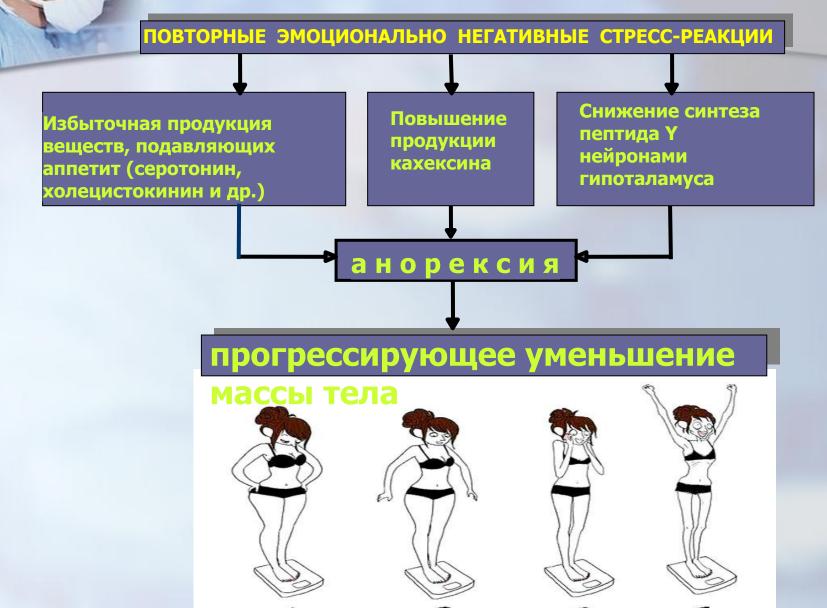
Патологическое снижение веса за счет жировой ткани $VMT < 18 \ Kr/M^2$

ДЕФИЦИТ ЖИРОВОЙ ТКАНИ ≥ 20-25% (до 50%)

Причины экзогенного истощения и кахексии


ОТСУТСТВИЕ ИЛИ ДЕФИЦИТ ПРОДУКТОВ ПИТАНИЯ

Основные причины первичного истощения и кахексии


Причины вторичного эндогенного истощения и кахексии

Основные звенья «кахексинового» механизма истощения и кахексии

Основные звенья «анорексического» механизма истощения и кахексии

Основные звенья «гипоталамического» механизма истощения и кахексии

СНИЖЕНИЕ, ПРЕКРАЩЕНИЕ СИНТЕЗА ПЕПТИДА У В ГИПОТАЛАМУСЕ

прекращение (снижение выраженности)
транс- и парагияктивации эндокринных
желез

снижение эффективности реакций

метаболизма

торможение процесса накопления жира в

ПРОГРЕССИРУЮЩЕЕ УМЕНЬШЕНИЕ МАССЫ ТЕЛА

ДИСЛИПОПРОТЕИНЕМИИ

(греч. dys-расстройство, lipos-жир, protein-белок, haimaкровь)

- состояния, характеризующиеся отклонением от нормы содержания, структуры и соотношения в крови различных фракций липопротеинов

Апопротеины

- Весьма серьезную роль в контактах липопротеинов с рецепторным аппаратом клеток играют апопротеины, которые встроены в липидный монослой мембраны липопротеиновой мицеллы. Именно молекулы апопротеинов мицеллы липопротеинов являются лигандами, связывающими соответствующий липопротеин с его рецептором. Они же в ряде случаев играют и роль кофакторов для соответствующих ферментов. В настоящее время выделено четыре вида апопротеинов:
- Апо-А обеспечивает связь ЛПВП с соответствующим рецепторным аппаратом.
- Апо-В обеспечивает связь ЛПНП с рецепторным аппаратом клеток печени и
- периферических тканей;
- **Ano-C-II** кофактор для липопротеиновой липазы, благодаря которой триглицериды
- удаляются из хиломикронов и ЛПОНП;
- **Апо-E** обеспечивает связь липротеинов с рецепторным аппаратом гепатоцитов. Описан и еще один вид апопротеинов так называемый апопротеин (а), которому приписывают наибольшую атерогенность и входящий в состав ЛПНП. Атерогенность этого апопротеина объясняют несколькими его свойствами. Во-первых, он легко окисляется и поглощается макрофагами. Во-вторых, печеночные клетки имеют наименьшее количество рецепторов к ЛПНП, содержащим липопротеин (а). И, наконец, в-третьих, имеются данные о том, что ЛПНП, содержащие липопротеин (а), обладают повышенными антитромболитическими свойствами.

Гиперлипидемия и гиперлипопротеинемия

патологическое состояние предболезни или заболевание, связанное с ростом содержания в плазме крови свободных жирных кислот, триглицеридов, холестерина, хиломикронов и липопротеинов.

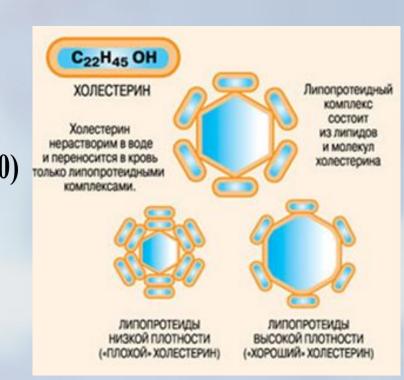
Типы гиперлипидемий

- Семейная гиперлипидемия первого типа—врожденное нарушение липидного обмена, обусловленное недостаточным расщеплением хиломикронов и ЛПОНП (при низкой активности липопротеинлипазы или недостатка активатора этого фермента). В плазме растет концентрация неатерогенных липопротеинов очень низкой плотности и хиломикронов, атеросклероз у таких больных обычно не развивается.
- Гиперлипидемия второго типа наследственное нарушение, при котором у родственников выявляют патологически высокое содержание холестерина в крови (семейная гиперхолестеринемия). Характерно раннее и быстрое развитие атеросклероза, ИБС и инфаркта миокарда. Ведущим звеном патогенеза гиперхолестеринемии при гиперлипидемии этого типа является или полное отсутствие рецепторов к ЛПНП на наружной клеточной поверхности, или нарушения их строения и функции вследствие мутации определенных генов.

Типы гиперлипидемий

- Гиперлипидемия третьего типа это наследуемая недостаточность катаболизма атерогенных липопротеинов промежуточной плотности. Характеризуется ускоренным развитием атеросклероза, тромбоэмболиями из системы венечной артерии, сахарным диабетом, ожирением, гипотиреозом и сильно выраженный ксантоматозом.
- Гиперлипидемия четвертого типа это наследуемое нарушение липидного обмена, характеризующееся ростом содержания в плазме крови триглицеридов и ЛПОНП.
- Гиперлипидемия пятого типа это полиэтиологичное нарушение липидного обмена, из-за которого у части больных возникают ксантоматоз и панкреатит как следствие очень высоких концентраций в плазме крови ЛПОНП и хиломикронов.

Виды липопротеинов (ЛП) в зависимости от атерогенности



Оценка атерогенности ЛП крови

 $XKA = \frac{XC \text{ общий - } XC \text{ ЛПВП}}{(\text{норма} < 3,0)}$

ХС ЛПВП

-холестериновый коэффициент атерогенности

Типы гиперлипопротеинемий

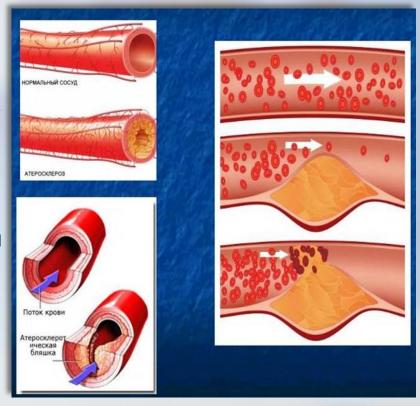
Таблица 1. Классификация гиперлипопротеинемий согласно ВОЗ

Тип	Холестерин плазмы	Холестерин ЛПНП	Триглицериды	Липопротеиды
L	Повышен	Снижен или в норме	Повышены	Избыток хиломикронов
lla	Повышен	Повышен	В норме	Избыток ЛПНП
116	Повышен	Повышен	Повышены	Избыток ЛПНП, ЛПОНП
III	Повышен	Снижен или в норме	Повышены	Избыток ЛПНП и хиломикронов
IV	Повышен	В норме	Повышены	Избыток ЛПОНП
٧	Повышен	В норме	Повышены	Избыток ЛПОНП и хиломикронов

Гиперлипопротеинемии

- синдромы, характеризующиеся расстройством образования, транспорта и обмена липопротеинов, проявляющиеся стойким повышением в плазме крови содержания холестерина и/или триглециридов

Гиполипопротеинемии


состояния, при которых понижено содержание жиров в крови

Атеросклероз

Atherosclerosis - хроническое заболевание, при котором в интиме артерий и аорты формируется кашицеобразный жиробелковый детрит (athere) и происходит очаговое разрастание соединительной ткани (sclerosis)

Атеросклероз - это хроническое очаговое поражение артерий эластического мышечно-эластического типа, характеризующееся отложением ИХ внутренней оболочке (интиме) апопротеин В-содержащих липопротеидов доставляемого ими холестерина, сопровождаемым структурно-клеточными изменениями и реактивным разрастанием соединительной ткани в средней оболочке сосудов (медии) с образованием фиброзных (атеросклеротических) бляшек, суживающих просвет сосудов, что приводит к местным и общим расстройствам кровообращения

Теории возникновения атеросклероза

Липидная теория (С.С.Халатов, Н.Н.Аничков)

Паразитарная теория (роль цитомегаловирусов и Chlamydia Pneumoniae в возникновении атеросклероза)

Гомоцистеинемическая теория (роль гипергомоцистеинемии в повреждении эндотелия и провокации развития атеросклероза)

Тромбогенная теория (причина развития атеросклероза – образование тромба, под которым формируется бляшка)

Теория «ответ на повреждение» (атеросклероз начинается с повреждающего воздействия факторов риска на эндотелий сосудов)

Геронтологическая теория (по И.В.Давыдовскому – причина атеросклероза – старческие изменения стенки сосудов)

Воспалительная теория (современная модификация воспалительной теории Р.Вирхова)

T

E

0

P

и

И

Основные факторы риска атеросклероза

Поражаемые сосуды

Гиперхолестеринемия

Избыточное питание

Гиподинамия

Курение, алкоголизм

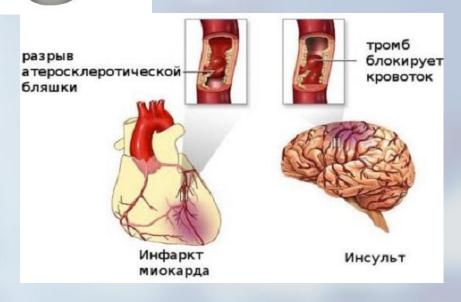
Артериальная

гипертензия

Отягощенная

наследственность

Мужской пол

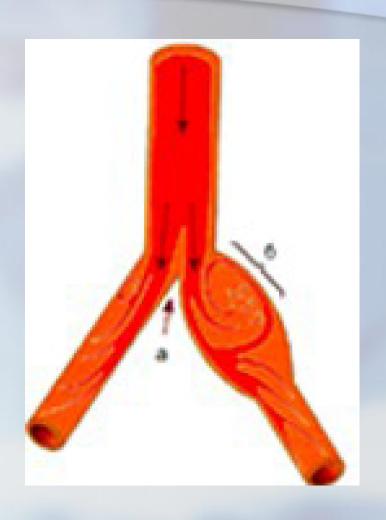

Стрессы

Сахарный диабет

Пожилой возраст

- □ брюшной отдел аорты
- коронарные артерии сердца
- □ артерии мозга
- почечные артерии
- □ артерии нижних конечностей

Повреждение сосудистого эндотелия — пусковой механизм развития атеросклероза


Основные этиологические факторы, вызывающие повреждение эндотелия сосудов

Роль гипертензии в повреждении сосудистого эндотелия

- Гипертензия является мощным фактором повреждения эндотелия сосудов, особенно в местах
- их бифуркации. Это явление хорошо иллюстрирует приводимый ниже рисунок
- В участке ≪а≫ давление крови наибольшее, напряжение сдвига максимальное. Именно здесь
- и происходит разрушение эндотелиоцитов и их десквамация (слущивание) с поверхности
- сосуда. В участке ≪б≫ давление крови наименьшее. Повреждение эндотелия на этих участках не
- происходит. Как известно, гипертоническая болезнь и атеросклероз – это два патологических
- процесса, тесно связанные между собою, или, точнее, способствующие развитию друг друга

Повреждение сосудистого эндотелия — пусковой механизм развития атеросклероза

Эндогенные повреждающие и защитные факторы эндотелия сосудов

Вазоконстрикторы- повреждающие факторы	Вазодилататоры — защитные факторы
Эндотелин-1	NO
Тромбоксан А2	Простациклин
20-НЕТЕ (20-гидроксиэйко-	Натрийуретический
зотетраеновая кислота)	пептид С
Ангиотензин -I	Кинины
Спазм сосудов, тромбообразование, пролиферация ГМК, повреждение эндотелия	Вазодилатация, антитромботическое, антипролиферативное действие

Патогенез атеросклероза

- Атеросклероз начинается с <u>повреждения эндотелия сосудов</u> (теория ответа на повреждение (Р.Росс, А.Гломсет, А.Готто, Р.Джексон, 1976). Далее, в результате измененных отношений между эндотелиоцитами, макрофагами и некоторыми липопротеинами происходит
- сначала внутриклеточное, а затем и внеклеточное <u>накопление липидов</u> (холестерина). В свою очередь, альтерация сосудистой стенки способствует как развитию <u>воспаления</u>, так и
- пролиферации гладкомышечных клеток и синтезу ими коллагена, эластина и
- гликозаминогликанов, образующих покрышку и другие соединительнотканные элементы атеросклеротической бляшки. Рост, развитие, а в последующем, и разрыв атеросклеротической
- бляшки способствует <u>образованию и отрыву тромбов</u>, выходу атероматозных масс в просвет сосуда, инициации тромбоэмболических повреждений

1. Долипидная стадия:

активированные тромбоциты стимулируют освобождение из эндотелия фактора роста. Последний стимулирует пролиферацию гладкомышечных клеток артериальной стенки, что приводит к ее утолщению и создает условия для формирования в дальнейшем атеросклеротических бляшек. активация лейкоцитов, которые обладают повышенной адгезией к эндотелию, приводит к его повреждению и способствует проникновению липидов в сосудистую стенку. повышается проницаемость эндотелия и интимы сосудов для грубодисперсных белков и липидов плазмы. Через эндотелий путем пиноцитоза начинают проходить глобулины, альбумины, фибриноген и липиды. Кроме того, повышается проницаемость интимы сосудов к моноцитам. Когда моноциты проникают в сосудистую стенку, они трансформируются вмакрофаги, которые начинают активно захватывать липиды и накапливать их в сосудистой стенке. повышается активность сывороточной гиалуронидазы, что ведет к деполимеризации гиалуроновой кислоты, содержащейся в стенке сосудов, и повышению сосудисто-тканевой проницаемости. Холестерин, отщепившийся в клетке от ЛПНП посредством воздействия на этот комплекс лизосомных энзимов, через регуляцию активности содержащегося в клетках фермента 3-гидроокси-3метилглутарил-коэнзим А-редуктазы, ответственного за контроль скорости лимитирующей реакции биосинтеза эндогенного холестерина, снижает синтез последнего. Гиперхолестеринемия в долипидный период обладает одной важной особенностью: меняется химическая структура холестерина. Если в интактном организме эфиры холестерина содержат ненасыщенные жирные кислоты и такой холестерин легко утилизируется, то на фоне развития атеросклероза в этих эфирах появляются насыщенные жирные кислоты. Этот холестерин плохо утилизируется и задерживается в сыворотке крови.

2. Липоидоз

На этой стадии атеросклероза на интиме сосудов появляются желтые пятна. Липолитическая активность сосудистой стенки резко снижена, в интиме откладывается большое количество липидов (результат моноцитарно-макрофагального механизма), белков. На эти продукты, а также на распадающиеся кислые мукополисахариды развивается реакция со стороны сосудистой стенки в виде разрастания соединительной ткани.

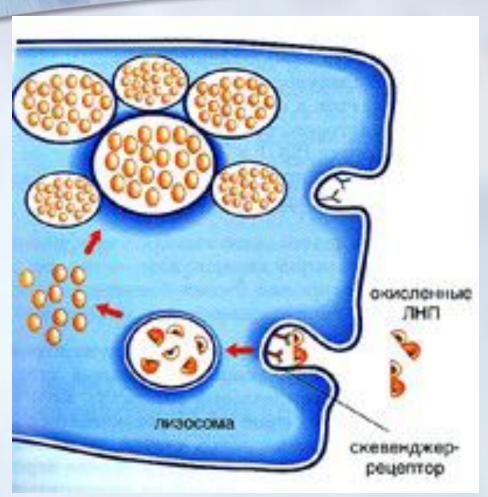
3. Липосклероз

В сосудистой стенке вокруг отложений белков и липидов происходит бурное разрастание соединительной ткани. В интиме отмечается большое количество «нагруженных» жиром макрофагов (так называемые ксантомные клетки), которые частью уходят в лимфу, а частью распадаются, увеличивая тем самым количество детрита в сосудистой стенке, где образуется плотная бляшка, выбухающая в просвет артерии.

4. Атероматоз

В липосклеротической бляшке параллельно идут два процесса: усиление склероза, то есть разрастание соединительной ткани, и усиление распада белковых и липидных масс, то есть образование детрита. Атеросклеротическая бляшка в этот период на разрезе представляет собой плотную соединительно тканную капсулу, внутри которой расположены массы детрита и кристаллы холестерина.

5. *Атерокальциноз*


На этой стадии истончается интима, покрывающая соединительно-тканную капсулу, бляшка адсорбирует на себе соли кальция и может петрифицироваться.

6. *Атероматозная язва*

Оболочка бляшки становится очень тонкой, бляшка изъязвляется, и атероматозные массы попадают в просвет сосуда.

Скевенджер-рецепторы

Важную роль в захвате модифицированных ЛПНП макрофагами играют, так называемые, рецепторы-мусорщики (скевенджер-рецепторы), которые синтезируются в макрофагах, перегруженных модифицированными ЛПНП. Именно образование этих рецепторов и нарушает деятельность обратной регулирующей связи, которая была уже упомянута выше

web-local.rudn.ru>Учебные

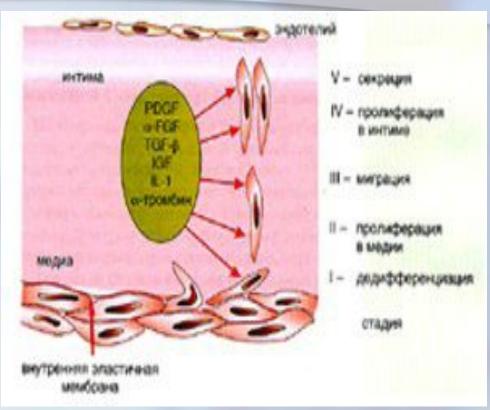
/ /1 '1'1 ' /1 1 /1 10

Миграция ГМК

■ Процесс

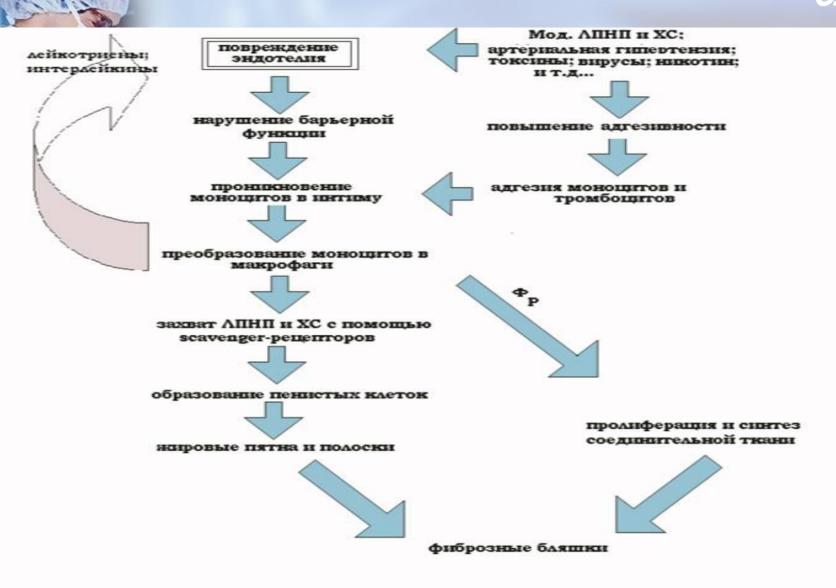
гибели пенистых клеток еще больше подстегивает воспаление за счет образования

провоспалительных цитокинов (интерлейкина 1, фактора некроза опухолей и т.п.). В этот же


период времени происходит активация гладкомышечных клеток. Под влиянием ряда ростовых

факторов и провоспалительных цитокинов они приобретают подвижность, мигрируют из медии

в интиму и субэндотелиальный слой и там становятся секреторноактивными. Продуцируемый


ими коллаген образует соединительнотканный слой покрышки атеросклеротической бляшки.

Сформировавшаяся атеросклеротическая бляшка вступает в свой собственный цикл развития

PDGF, α-FGF, TGF-β, IGF – ростовые факторы, IL-1 – интерлейкин 1

Механизмы образования атеросклеротической бляшки

Разрушение атеросклеротической бляшки

Факторы риска развития атеросклероза

ФАКТОР РИСКА	МЕХАНИЗМЫ АТЕРОГЕННОГО ДЕЙСТВИЯ
ВОЗРАСТ	Гиперхолестеринемия, увеличение холестерина и ЛПНП
пол	Повышение уровня холестерина и ЛПНП в постменструальном периоде
ОЖИРЕНИЕ	Уменьшение содержания ЛПВП и увеличение ЛПОНП
гиподинамия	Увеличение холестерина и и ЛПНП, снижение ЛПВП
КУРЕНИЕ	Уменьшение ЛПВП, повреждение эндотелия
НАСЛЕДСТВЕННОСТЬ	Генетически обусловленные дислипидемии
АРТЕРИАЛЬНАЯ ГИПЕРТЕНЗИЯ	Повреждение эндотелия, атерогенные изменения липидного спектра крови, нарушения трофики сосудистой стенки
СТРЕСС	Повреждение эндотелия, усиление липолиза
САХАРНЫЙ ДИАБЕТ	Атерогенные изменения липидного спектра крови, повреж- дение эндотелия

Принципы патогенетической терапии атеросклероза

- **При легкой степени гиперхолистеринемии** (5.26.5 ммоль/л в плазме крови) рекомендуется диета со значительным уменьшением в пище жиров и продуктов, в большом количестве содержащих холестерин.
- При умеренной гиперхолестеринемии (6.57.8 ммоль/л) наряду с диетой применяются препараты, снижающие степень липидемии. То же самое рекомендуется и при высоком уровне гиперхолестеринемии (более 7.8 ммоль/л). На этой стадии также применяются препараты, ингибирующие внутриорганный синтез холестерина, которые входят в группу статинов, являющихся ингибиторами КоА в гладкомышечных клетках сосудистой стенки. Однако, употребляя эти лекарства, человек попадает в пожизненную зависимость от их ежедневного приема, поскольку прекращение ингибиции образования эндогенного холестерина немедленно вызовет его гиперпродукцию, и концентрация липопротеинов крови возрастет в несколько раз.
- Кроме того, для лечения и профилактики прогрессирования атеросклеротического процесса необходимо лечение тех заболеваний, на фоне которых атеросклероз развивается наиболее интенсивно (сахарный диабет, гипофункция щитовидной железы и др.)

Атерэктомия

Различные варианты атерэктомии (удаления атеросклеротической бляшки из просвета коронарной артерии) были исходно разработаны в качестве дополнения к чрезкожным коронарным вмешательствам. К ним относят лазерную атерэктомию, основанную на фотоаблации (выжигании и испарении) бляшки, *ротационную атерэктомию*, основанную на использовании быстро вращающегося специального лезвия с алмазным покрытием, для механического удаления бляшки, и *направленную атерэктомию* для вырезания и удаления атеросклеротической бляшки. Ранее предполагалось, что такие устройства позволят снизить частоту развития повторных сужений (рестенозов), однако накопление опыта их использования и клинические исследования выявили их невысокую эффективность, и в настоящее время атерэктомию применяют в отдельных клинических случая в качестве дополнения стандартным эндоваскулярным вмешательствам на коронарных артериях.

Исходы атеросклероза

- 1. атеросклероз резко повышает чувствительность кровеносных сосудов к спастическим влияниям. Это связано с тем, что детрит, образующийся в сосудистых стенках, их плазматическое пропитывание могут раздражать заложенные там рецепторные окончания вазоконстрикторов, которые значительно чувствительнее к раздражению, нежели вазодилататоры. Кроме того, поврежденный атеросклерозом эндотелий перестает выделять биологически активные вещества, обеспечивающие в норме вазодилатацию и препятствующие тромбообразованию. Поэтому даже слабые спастические влияния на фоне атеросклероза могут давать сильный прессорный эффект, что учащает и усиливает приступы стенокардии и гипертонические кризы.
- 2. атеросклеротические бляшки, а также диффузные утолщения стенки сосудов сужают просвет последних и нарушают поступление крови к органам, в том числе к сердечной мышце и мозговой ткани. Атеросклеротическая бляшка может полностью закрыть просвет сосуда и вызвать *инфарцирование соответствующего органа*.
- 3. поскольку атеросклеротический процесс повреждает сосудистый эндотелий, он создает основу для возникновения тромбов, так как один из важнейших моментов в процессе тромбообразования это повреждение интимы. Тромбы в той или иной степени нарушают циркуляцию крови по сосудам, а также могут отрываться и превращаться в эмболы
- 4. на стадии атероматозной язвы детрит, попадая в кровоток, также становится эмболом, который может переноситься кровью и закупоривать мелкие кровеносные сосуды. Особенно опасен этот процесс при изъязвлении атероматозной бляшки, локализованной в коронарных или мозговых артериях, являющихся функционально концевыми. Детрит током крови заносится в более мелкие разветвления этих сосудов, закупоривает их и может вызвать развитие инфаркта миокарда или ишемического инсульта.

