

Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева

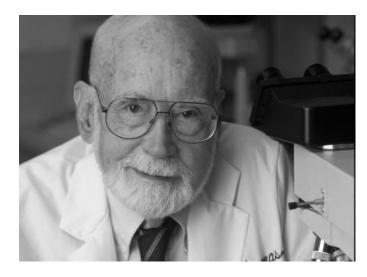
Национальное общество детских гематологов и онкологов

Трансплантация гемопоэтических стволовых клеток у детей

Киргизов Кирилл Игоревич

K.M.H.

Скоробогатова Е.В., Качанов Д.Ю., Шаманская Т.В., Хисматуллина Р.Д., Скворцова Ю.В., Балашов Д.Н., Масчан М.А., Варфоломеева С.Р., Масчан А.А., Румянцев А.Г.


СТРАНИЦЫ ИСТОРИИ

Первые аллогенные трансплантации гемопоэтических стволовых клеток (ТГСК) в мире выполнены в 1957 г. под руководством Эдварда Донналла Томаса (США).

Все пациенты умерли до 100-го дня.

Первая успешная ТГСК в Европе выполнена в 1965 г. – мальчик 6 мес. с первичным иммунодефицитным состоянием.

Сегодня в мире выполнено более 1.000.000 ТГСК, в Европе – более 500.000

Эдвард Донналл Томас, лауреат Нобелевской премии

Трансплантация гемопоэтических стволовых клеток

Аллогенная/Аутологичная ТГСК

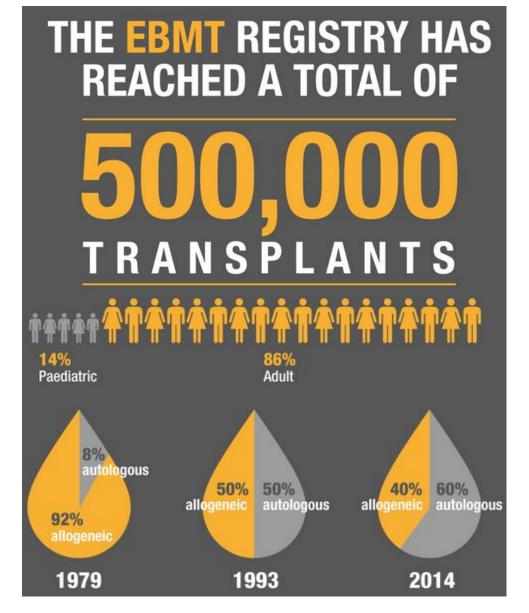
Возможные источники клеток при Алло-ТГСК:

- Родственный/неродственный донор: костный мозг (КМ) или стволовые клетки периферической крови (СКПК) и пуповинная кровь (ПК)
- Гаплоидентичная ТГСК (донор совместим на 50%)

ТГСК: ДЕТИ И ВЗРОСЛЫЕ

Основным видом трансплантаций у взрослых в настоящее время являются аутологичные ТГСК, в отличие от детей, у которых более часто выполняются аллогенные ТГСК

Самые частое показание к ТГСК у детей – лейкозы, солидные опухоли, иммунодефициты, апластические анемии и



Современные тренды

- Рост числа трансплантаций от альтернативных доноров
- Использование новых интенсивных схем химиотерапии
- Улучшение ситуации с сопроводительной терапией
- Новые препараты специфической терапии, возможность использования клеточных технологий

Приблизительная потребность в ТГСК в год в РФ для детей – около 1000 трансплантаций

BMDW – 26.132.917 доноров

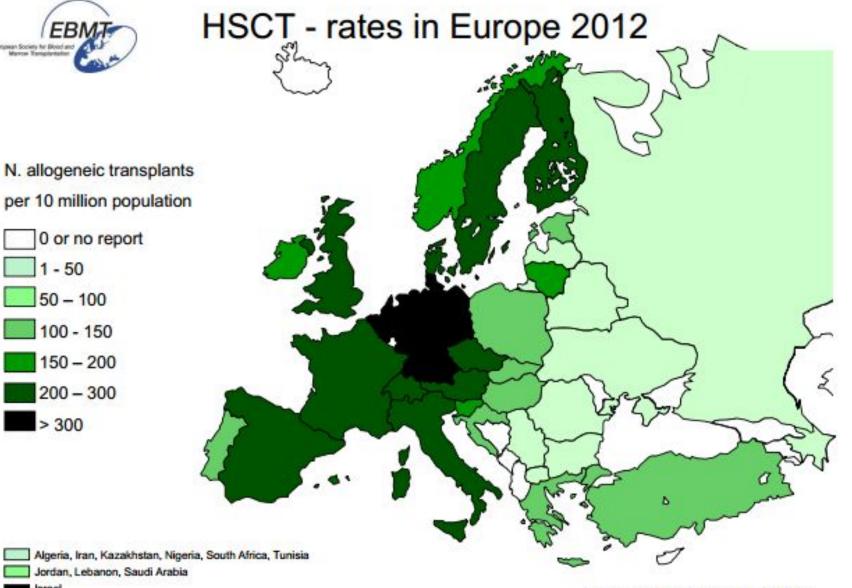
Основные показания к ТГСК

Indication	Allogeneic 1 st HSCT	Autologous 1st HSCT	Total
Leukemia	10080	561	10641
Lymp h oma	1504	7940	9444
Plasma Cell disorder	678	9214	9892
Bone marrow failure	805	4	809
Solid tumor	56	1574	1630
Non-malignant disorders	929	193	1122
Other	113	27	140
Total 1st Transplants	14165	19513	33678

EBMT, 2014

0 or no report

1 - 50

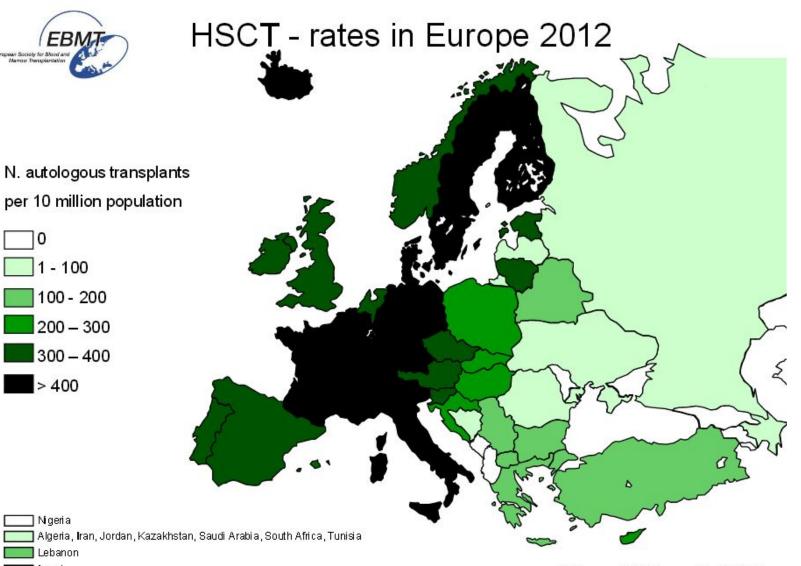

50 - 100

100 - 150

150 - 200

200 - 300

> 300


1 - 100

100 - 200

200 - 300

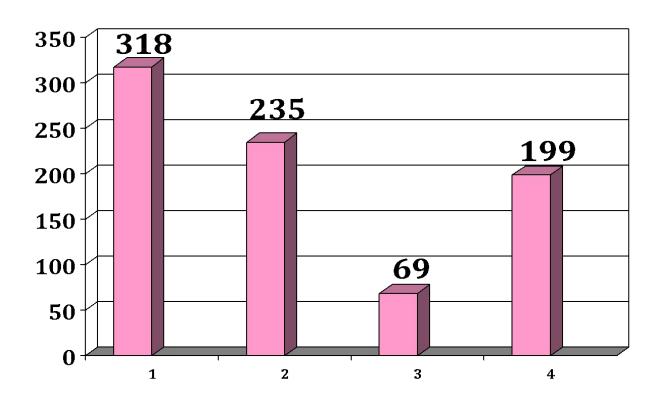
300 - 400

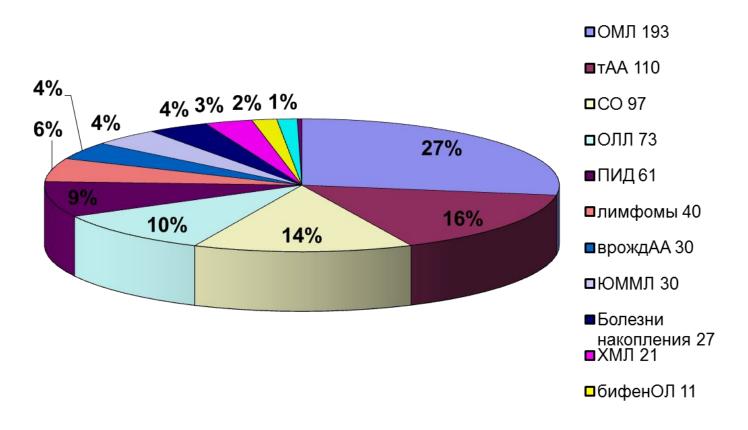
> 400

Nigeria

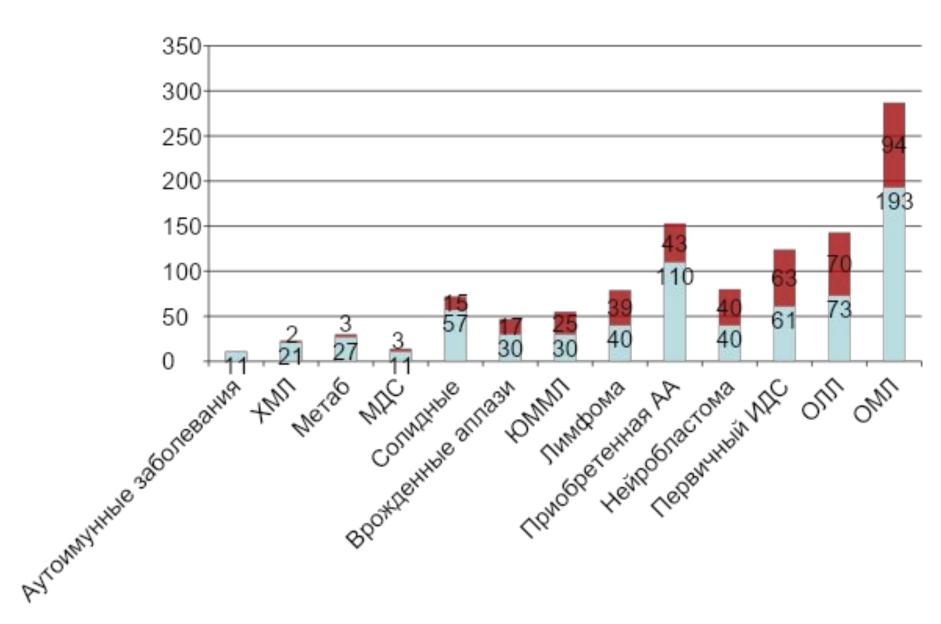
Israel

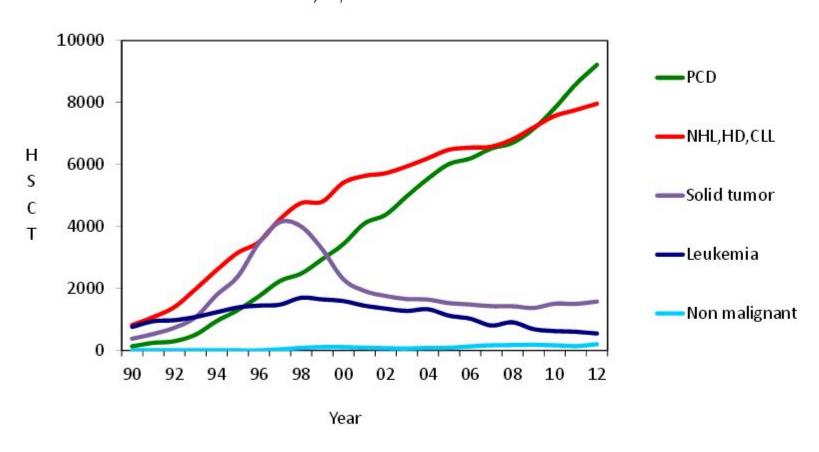
НИИГиПК – 5 ТГСК




Российская детская клиническая больница

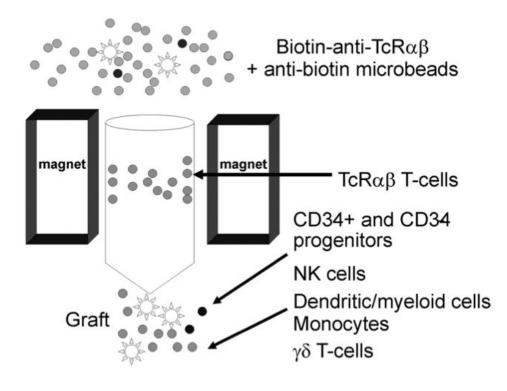
Виды ТГСК

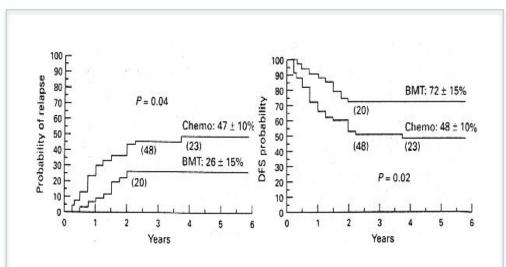

1 – от HLA-идентичных родственных доноров 2 – от неродственных доноров 3 – гаплоидентичные 4 – аутологичные


Показания к ТГСК – РДКБ (с 1992 г.)

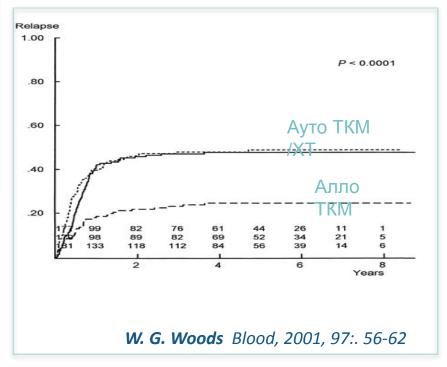
Показания к ТГСК – ФНКЦ ДГОИ им. Дмитрия Рогачева

Основные показания к Ауто-ТГСК Динамика





ТСRαβ деплеция



Аллогенная ТГСК – самая эффективная терапия при острых лейкозах высокого риска

Shaison G et al. Bone Marrow Transplant 1996(17):191-196

Аллогенная ТГСК – самая эффективная терапия при острых лейкозах высокого риска

Проблемы

- •Болезнь «трансплантат-против-хозяина»
- •Инфекционные осложнения
- •Токсическая смертность
- •Рецидив

самая частая причина летальности частота **20-90**% (ц/г аномалии, n ремиссии)

Посттрансплантационная терапия при ОЛ

Классическая парадигма ТГСК

ТГСК – последний метод лечения

Дальнейшая терапия не показана

нет терапии, эффективной после мегадозной терапии

миелосупрессия и риск инфекций

возможность снижения GVL

«Новая» парадигма ТГСК

ТГСК – платформа для продолжения терапии

Клеточная терапия

«селективные» антилейкемические препараты

(профилактическое или «упреждающее» применение)

Солидные опухоли

- Нейробластома
- Саркома Юинга
- Опухоли головного мозга

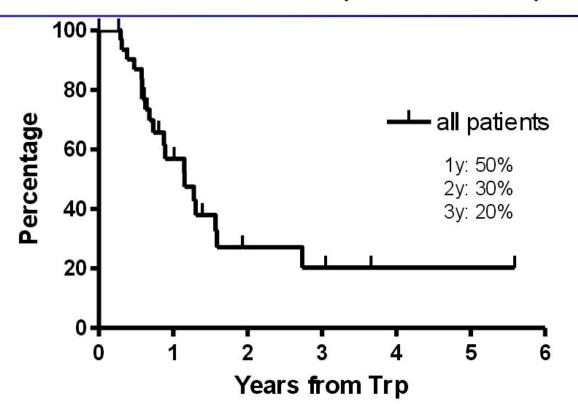
Проведение высокодозной ПХТ с последующей Ауто-ТГСК дает преимущества для заболеваний высокого риска в сравнении с терапией стандартного риска.

Современные данные показывают достаточно высокую эффективность консолидации ВДПХТ при солидных опухолях

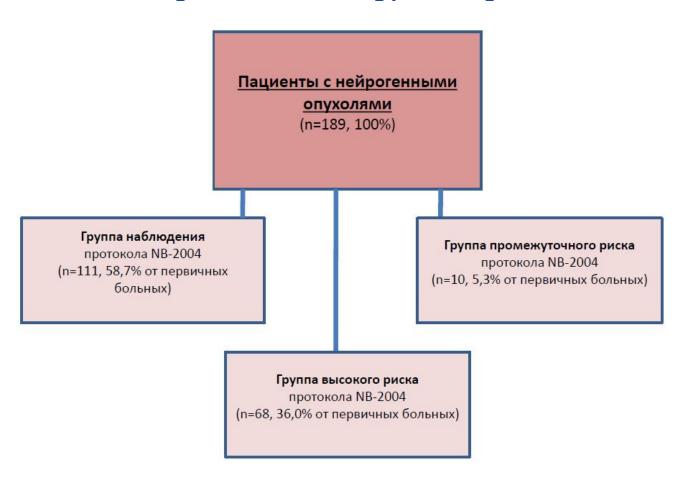
Нейробластома – наиболее частое показание для Ауто-ТГСК у детей Абсолютные показания к Ауто-ТГСК при НБ (ЕВМТ): пациенты в возрасте от 1 года со стадией 4 на момент постановки диагноза или с амплификацией N-MYC. INSS – 2-4 ст. При рецидиве – любой метастатический рецидив (возраст более 1 года); любой рецидив с амплификацией N-MYC

Саркомы Юинга и другие саркомы мягких тканей – рекомендуется Ауто-ТГСК при агрессивном течении или рецидивах. Преимущества при применении бусульфан/мельфалан содержащих режимах

ТГСК при солидных опухолях, данные ЕВМТ


Disease	Disease status at time of ASCT	Patients	Projected 5-yr EFS	p-value	
Neuroblastoma	during primary treatment after relapse	3640 360	0.35±0.01 0.23±0.02	S	
Ewing tumours	during primary treatment after relapse	1311 365	0.44±0.02 0.25±0.03	S	
Soft tissue sarcoma	during primary treatment after relapse	553 254	0.23±0.02 0.19±0.03	S	
CNS tumours	during primary treatment after relapse	976 335	0.39±0.02 0.19±0.02	S	
Retinoblastoma	during primary treatment after relapse	54 36	0.63±0.07 0.40±0.09	NS	
Wilms' tumour	during primary treatment after relapse	112 223	0.52±0.05 0.44±0.04	NS	
Germ cell tumours	during primary treatment after relapse	151 149	0.49±0.05 0.38±0.04	S	
Osteosarcoma	during primary treatment after relapse	99 107	0.36±0.05 0.14±0.04	S	

Общая выживаемость, солидные опухоли

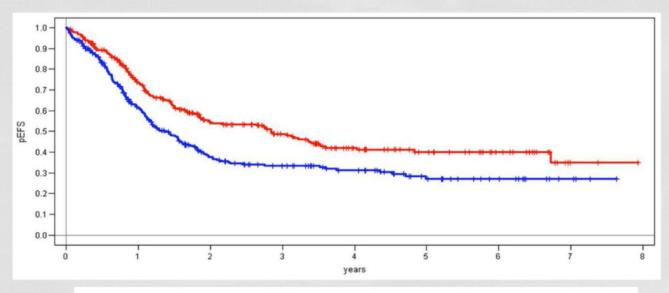

Over all Survival (Solid Tumors)

Распределение по группам риска

Данные кооперированной группы по изучению НБ ФНКЦ ДГОИ им. Дмитрия Рогачева, 2014

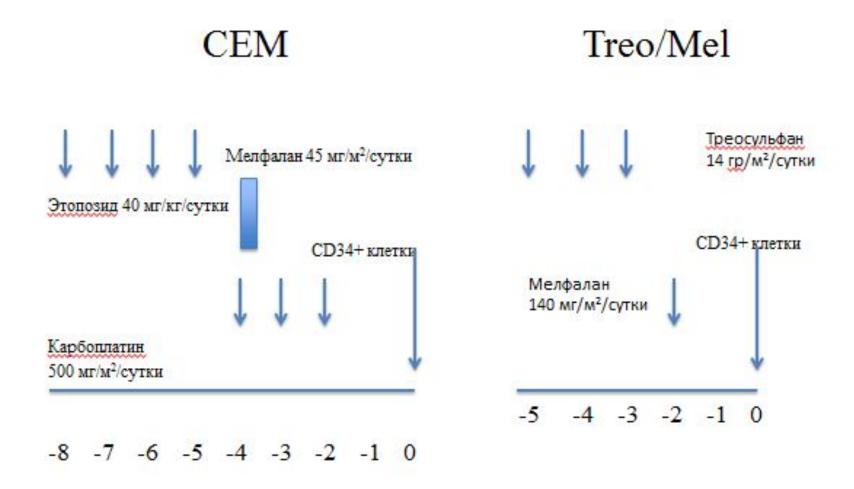
Пациенты группы высокого риска

- Стадия 4 (≥1 года) по INSS
- MYCN-амплификация, независимо от стадии и возраста пациента


Группа высокого риска: лечение

- Индукционная терапия:
 - Химиотерапия
 - Аферез ГСК
 - Хирургическое лечение +/- лучевая терапия
- Консолидирующая терапия:
 - MIBG-терапия
 - Аутологичная трансплантация ГСК
- Поддерживающая терапия
 - 13-цис-ретиноевая кислота
 - +/-иммунотерапия

SIOPEN High-Risk Study (ASCO 2012) BUMEL: Improves EFS and OS



	Pts	3-yr EFS	p-value	3-yr OS	p-value
BUMEL	281	0.49±0.0 3	<0.001	0.60 ± 0.03	0.003
CEM	282	0.33±0.0 3		0.48±0.03	

Режимы кондиционирования

Токсичность терапии

	CEM	Treo/Mel
Мукозит желудочно-кишечного тракта		
1 степени	1 (3,5%)	2 (8%)
2 степени	13 (46,4%)	16 (64%)
3 степени	11 (39,4%)	7 (28%)
4 степени	3 (10,7%)	-
VOD	-	-
Токсидермия	15 (53,6%)	25 (100%)
1-2 степени	13 (46,4%)	11 (44%)
3-4 степени	2 (7,2%)	14 (56%)

Токсичность

	CEM-28	Treo/Mel-25		
Лихорадка	27 (96,4%)	25 (100%)		
Септический шок	4 (14,2%)	2 (8%)		
ИВЛ	2 (7,1%)	1 (4%)		
Ультрагемофильтрация	2 (7,1%)	0		
	Трансплантационная летальность			
	3 (10,7%)	0		

Результаты терапии на 15.05.15

• CEM (28)

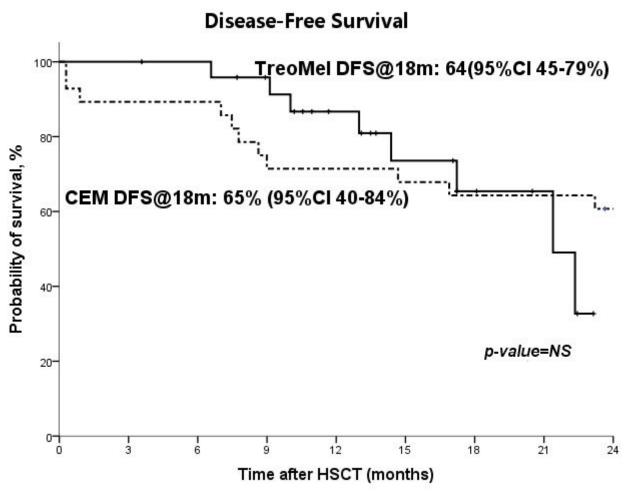
Живы – 15 пациентов

TRM – 3 пациента

Смерть от прогрессии - 10 пациентов

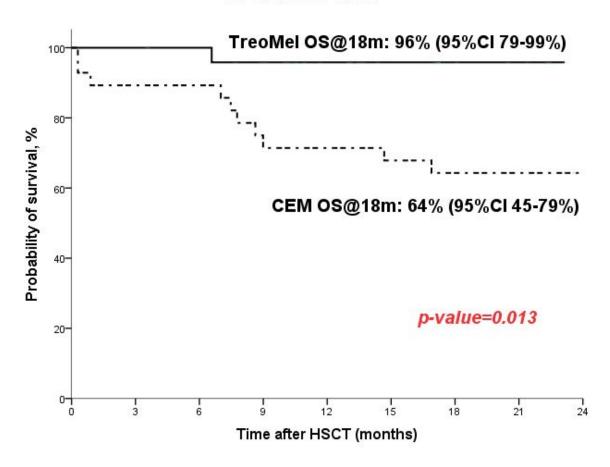
• Treo/Mel (25)

Живы – 24 пациента


TRM - 0

Смерть от прогрессии - 1 пациент

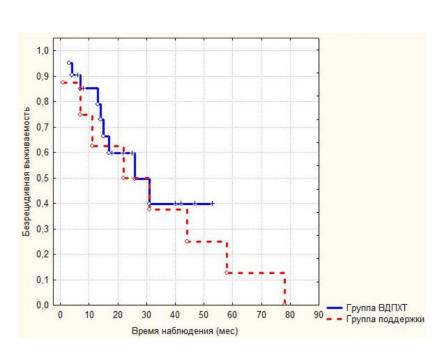
Безрецидивная выживаемость в зависимости от режима кондиционирования


Данные кооперированной группы по изучению НБ ФНКЦ ДГОИ им. Дмитрия Рогачева, 2015

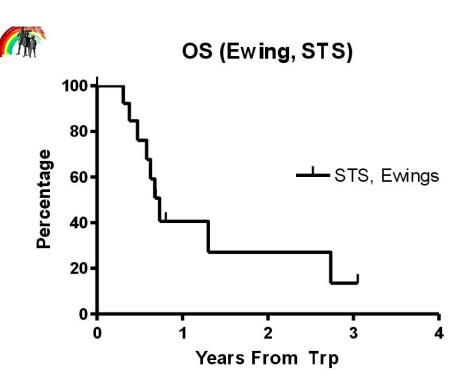
Общая выживаемость в зависимости от режима кондиционирования

Overal Survival

Данные кооперированной группы по изучению НБ ФНКЦ ДГОИ им. Дмитрия Рогачева, 2015

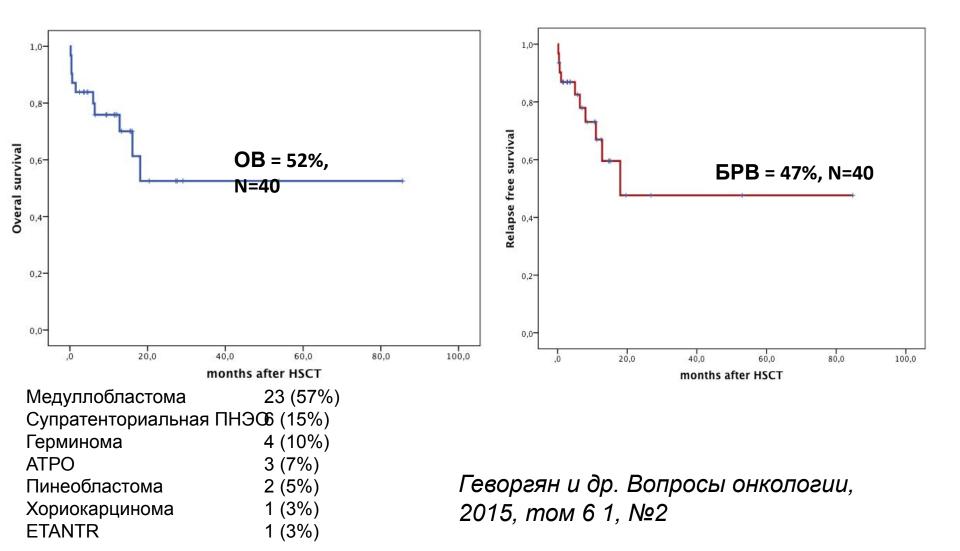

Саркомы, актуальность ТГСК

- Находятся на втором месте по частоте в детской популяции среди опухолей костной ткани после остеогенной саркомы;
- Быстрый рост и раннее метастазирование;
- Более 50% пациентов начинают получать терапию на поздних стадиях;
- Долгосрочная выживаемость в группе неблагоприятного прогноза 0-20 %;



Саркомы, эффективность Ауто-ТГСК

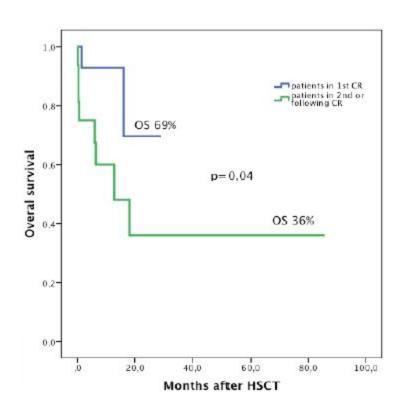
Hangretinger R.., 2013

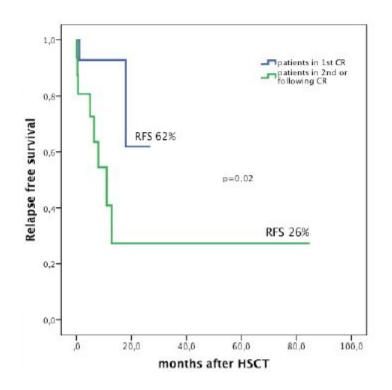


Опухоли ЦНС, актуальность ТГСК

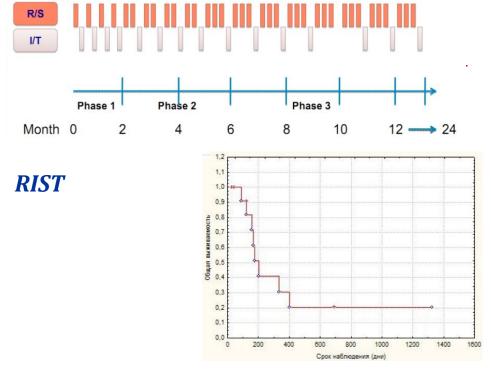
- 30% пациентов с опухолями ЦНС относятся к высокой группе риска, характеризующейся плохим ответом на стандартную комплексную терапию
- 35% детей с эмбриональными опухолями младше 4-х лет, которым невозможно проведение лучевой терапии
- Сложность подведения достаточной дозы химиопрепаратов к опухоли, ввиду наличия гематоэнцефалического барьера
- Отсутствие общепринятых стандартных схем лечения рецидивов опухолей ЦНС, имеющих высокую смертность

Общая и безрецидивная выживаемость (2х летняя) 40 пациентов с опухолями ЦНС, получивших ВДХТ с ауто-ТГСК

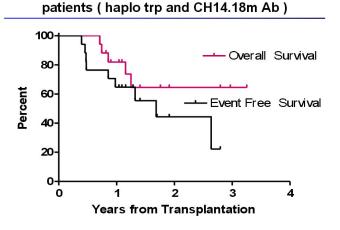

Опыт проведения ТКМ у пациентов с опухолями ЦНС в ФНКЦ ДГОИ им. Дмитрия Рогачева 2012-2016 гг.


по	возра ст	Д3	Первично е лечение	Отве т	Лечение рецидива	Ответ	PFS	os	Исход 1.09.16
Д	1г8м	МБ, МЗ	ХИТ- СКК+ВДХТ+ аутоТГКС	ПО	-	-	4г	4г	ж
М	3г	МБ М3	ХИТ- СКК+ВДХТ+ аутоТГСК+Л Т	ПО	-	-	2 г	4г7м	Ж
M	2г9м	МБ Мх	Непрогр ХЛТ	ПО	ХИТ-рец +ВДХТ+ау тоТГСК	ПО	7л2м	8л5м	у
М	3г4м	МБ М1	ХИТ-Med-20 14 +ВДХТ+ауто ТГСК	ПО	Темозоло- мид	ЧО	1г6м	1г8м	Ж
М	1г8м	МБ М0	ХИТ-СКК	ПБ	ХИТинд+ О+ХИТре ц+ВДХТ+ аутоТГСК	ПО	4 м	3г4м	Ж

Общая и безрецидивная выживаемость у пациентов с опухолями ЦНС (первая или вторая и последующие ремиссии)



Ауто-ТГСК при солидных опухолях


- Ауто-ТГСК для пациентов групп высокого риска обладает приемлемой токсичностью и потенциально способна улучшить результаты лечения детей;
- Оптимальным источником ГСК для трансплантации являются ПСК;
- Применение Ауто-ТГСК в качестве «терапии спасения» при химиорезистентных формах заболевания неэффективно;
- Наиболее часто наблюдаемыми видами токсичности после Ауто-ТГСК являются инфекционные осложнения, мукозиты слизистых ЖКТ и гепатотоксичность.

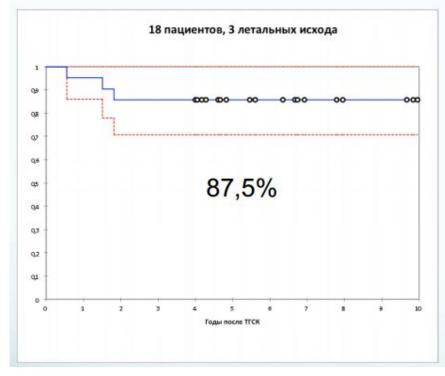
Опции при неэффективности

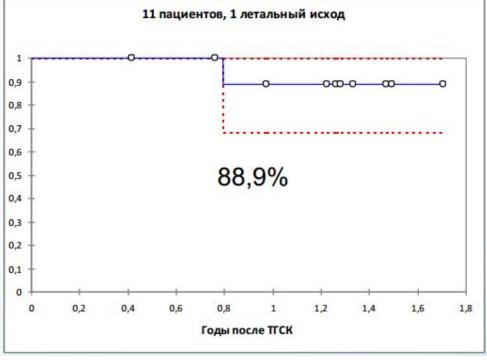
- •Таргетная терапия
- •Алло-ТГСК (в том числе гапло)
- Радиоизотопная терапия
- •Терапия антителами
- •Иммуноадоптивная терапия

Phase II feasibility study using ch14.18/CHO antibody and subcutaneous Interleukin 2 after haploidentical stem cell transplantation in children with relapsed neuroblastoma Eudra CT 2009-015936-14 Haplo Trp. anti GD2 mAb (CH14.18/CHO) 8 hour infusion day 1-5 6 cycles Evaluation after cycles 3,6 ca. 200x106/kg NK Interleukin 2 s.c. 1 Mio U/m2 day 6,8,10 day 0 30 60 90 120 Survival of relapsed neuroblastoma

ОВ (НБ и СЮ) Алло-ТГСК (Казанцев И.В., 2014)

Hangretinger R., 2013





Апластическая анемия

2004-2010 гг vs 2012-2014 гг

Анемия Фанкони

Анемия Фанкони (АФ) – врожденное заболевание, впервые описанное в 1927 году Гуидо Фанкони.

- Врожденные пороки развития
- Прогрессирующая костномозговая недостаточность
- Предрасположенностью к развитию злокачественных новообразований

 ${\bf A\Phi}$ - самый частый врожденный синдром костно-мозговой недостаточности: 1 на 100.000 живорожденных.

Гематологические нарушения – развитие в детском возрасте: медиана – 7 лет

Риск развития МДС/ОМЛ и солидных опухолей составляет 90% и 28% соответственно к 40 годам

Фенотипические аномалии

Проявления вариабельны

- Меланино-подобная пигментация кожи (пятна «кофе с молоком»)
- Характерное «птичье лицо»
- Низкий рост
- Аномалии костей скелета (в особенности кистей рук и лучевых гостей),
- Микроцефалия
- Аномалии ушей, сердца и почек

Анемия Фанкони Доступные терапевтические опции

Андрогены

Ответ у 75% пациентов с АФ при начале терапии в дебюте цитопении. Поздний ответ (до 12 месяцев). Препаратом выбора может служить оксиметолон в дозе 2-5 мг/кг/день.

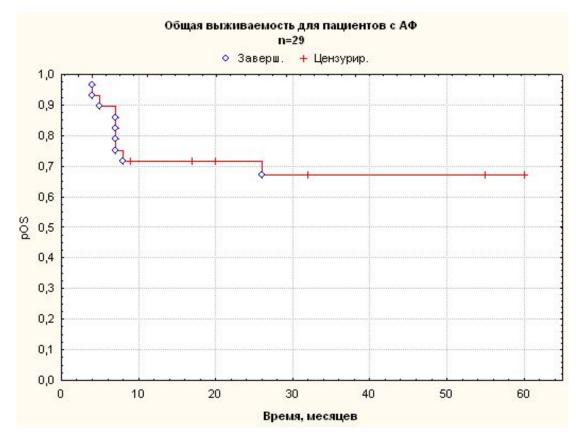
Факторы роста

Применялись Г-КСФ, ГМ-КСФ и ИЛ-3 - частичный и непродолжительный ответ

Экспериментальная терапия

Этанерцепт – ингибирование повышенного апоптоза в ответ на активацию TNF-α, который реализуется посредством генерации избыточного количества активных форм кислорода, повреждающих клетки костного мозга пациентов с AΦ.

Трансплантация гемопоэтических стволовых клеток

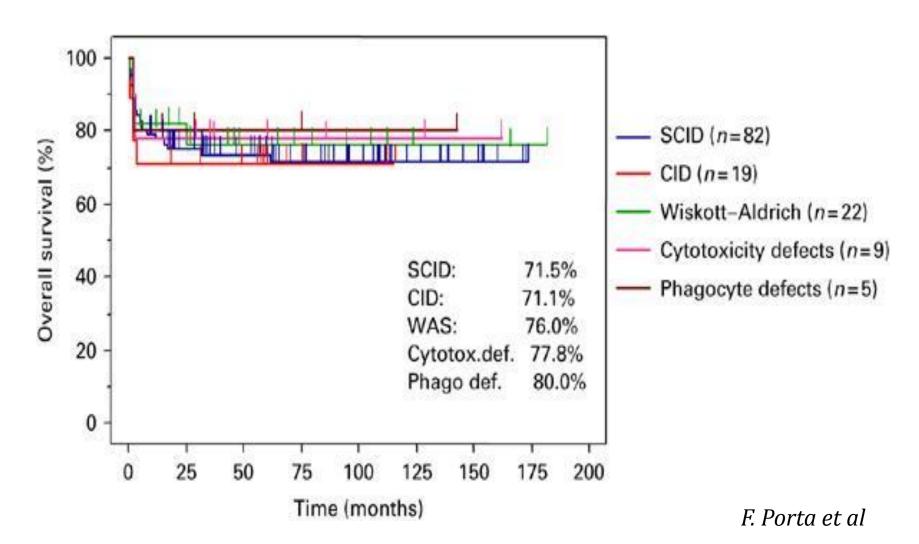


Опыт ФНКЦ ДГОИ/РДКБ

Результаты

Выживаемость. Медиана наблюдения составляет 31,9 месяца (3,8-246). Для пациентов, трансплантированных в последние 5 лет, показатели выживаемости приближаются к 80%.

Причины смертей явились: комбинация РТПХ и инфекционных осложнений (n=5), инфекционные осложнения (n=3), острая и хроническая РТПХ (n=2), рак языка (n=1).

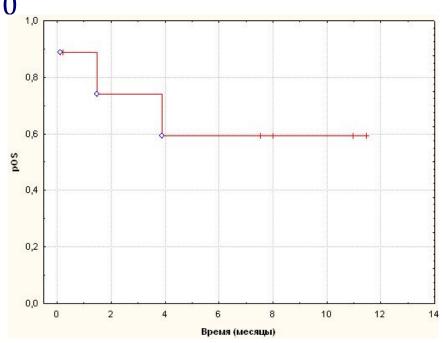


ТГСК при ПИД: Долгосрочные результаты

ТГСК при ПИД: Подбор донора перед ТГСК

Родственный/неродственный донор

Совместимость: 10/10, возможно 9/10


(TCR a/b/CD19-деплеция)

Гаплоидентичный донор

Совместимость: >5/10 Новая технология TCR a/b/CD19деплеция

Пуповинная кровь

Совместимость – не ниже 4/6 Оптимальная совместимость – 10/10

Нейрометаболические заболевания

Наследственные болезни, вызванные нарушениями обмена, проявляющимися прогрессирующим отложением веществ определенного типа в клетках различных тканей, например гликогенозы, лейкодистрофии, фукозидоз и другие

Нозологии рассматриваемые в данном сообщении (нейрометаболические заболевания):

- МПС І типа
- Болезнь Краббе
- Х-АЛД
- Метахроматическая лейкодистрофия

Мукополисахаридозы

Группа метаболических заболеваний соединительной ткани, связанных с нарушением обмена кислых гликозаминогликанов (GAG, мукополисахаридов), вызванных недостаточностью лизосомных ферментов обмена гликозаминогликанов. Заболевания связаны с наследственными аномалиями обмена, проявляются в виде «болезни накопления» и приводят к различным дефектам костной, хрящевой, соединительной тканей

І тип — синдром Гурлер аутосомно-рецессивное заболевание Laronidase не проникает через гемато-энцефалический барьер

II тип — синдром Хантера

III тип — синдром Санфилиппо

IV тип — синдром Моркио

V тип — синдром Шейе

VI тип — синдром Марото—Лами

VII тип — синдром Слая

Трансплантация гемопоэтических стволовых клеток при нейрометаболических заболеваниях

Для лечения нейрометаболических заболеваний показала высокую эффективность трансплантация гемопоэтических стволовых клеток (ТГСК)

Первые трансплантации – 1990 год

Первые доклады – 1994 год

Клинические рекомендации – 2000 год

Peters C, et al 1996

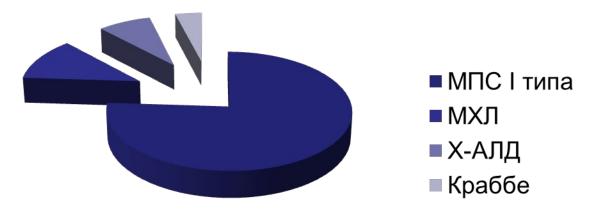
Tolar J, et al 2005

Moser et al., 2004

Опыт РДКБ/ФНКЦ ДГОИ им. Дмитрия Рогачева 2008-2014

Всего пациентов – 25

Диагнозы:

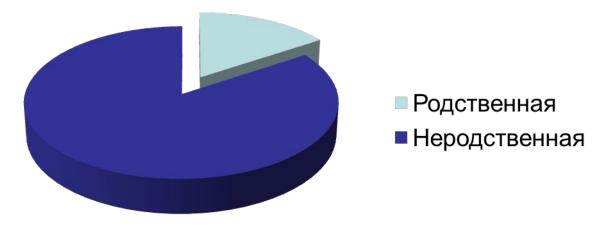

МПС I типа (n=19)

Метахроматическая лейкодистрофия (n=3)

X-АЛД (n=2)

Болезнь Краббе (n=1)

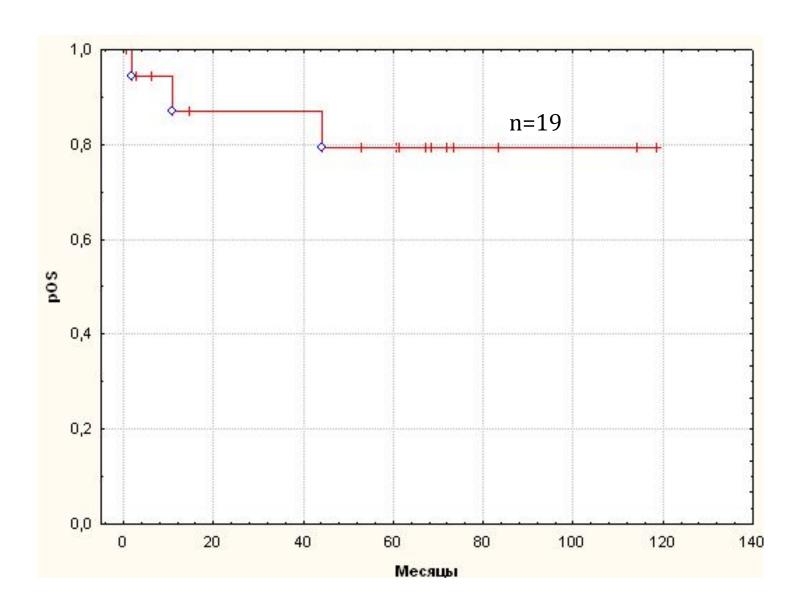
Нозологии



Мукополисахаридоз I типа

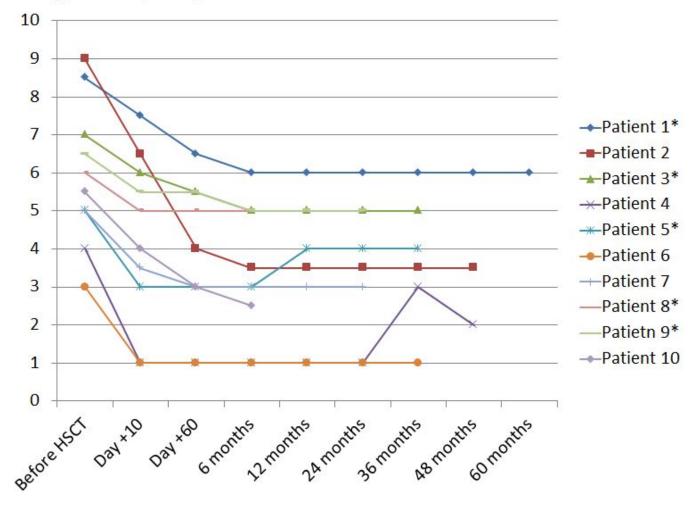
Вид ТГСК

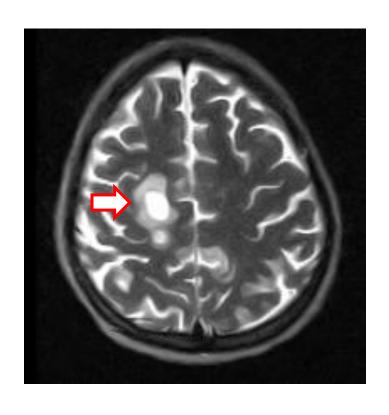
КМ/ПСКК (n=18) Пуповинная кровь (n=1) – неприживление

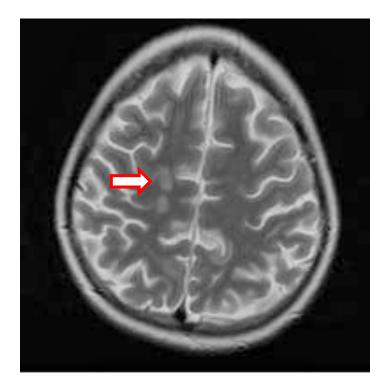


Причины смерти:

- •Инфекционные осложнения (пневмония смешанной этиологии), n=3
- •Неприживление, n=1




EDSS (J. Kurtzke, 1983)



Patient 2 Brain MRI before and after Auto-HSCT

Before Auto-HSCT

On Day+60 after Auto-HSCT

Наблюдение и реабилитация после ТГСК

50% пациентов излеченных пациентов имеют 1 изолированное осложнение в периоде после проведения комбинированного лечения злокачественных заболеваний, 15% - 2 и более осложнений

Возможности реабилитации в ЛРНЦ «Русское поле». Специальные программы для детей раннего возраста ведь то, что ребенок не получит в раннем периоде, не получит уже никогда.

Показан контроль поздних осложнений по системам, адекватная сопроводительная терапия

Пациентам показана вакцинация в декретированные сроки после ТГСК (по рекомендациям трансплантационного центра)