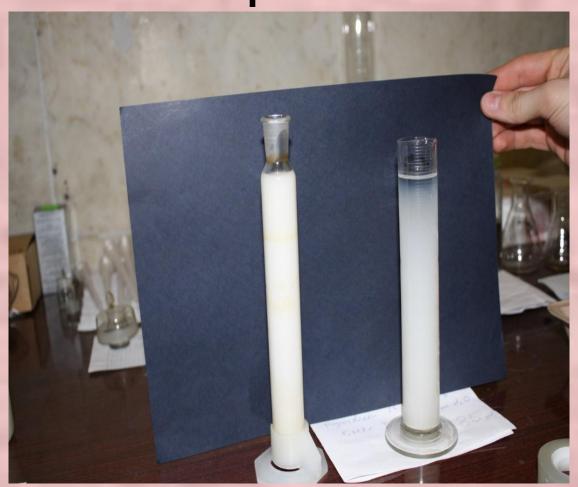
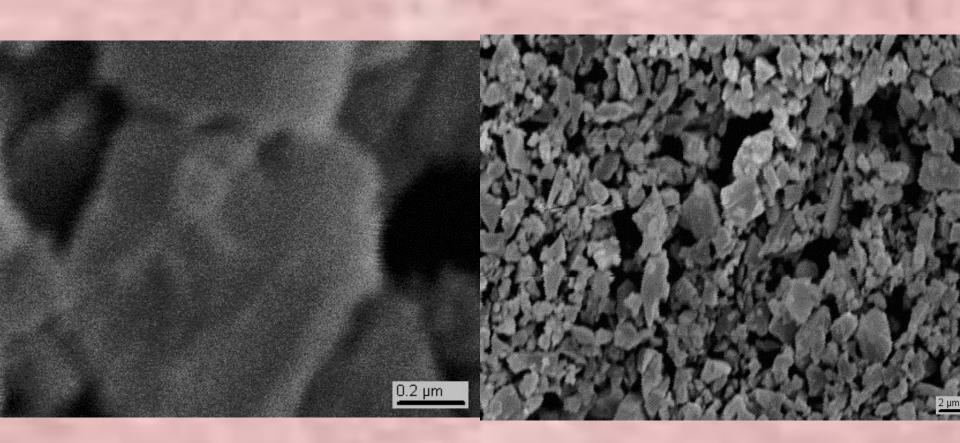
Методика проведения измерений размеров наночастиц водных неорганических суспензий

Актуальность работы


Кафедра Фотоники и Оптоинформатики включает научно-образовательный кластер «Физико-химическое конструирование наноматериалов», обладающий оборудованием для получения неорганических наночастиц различного состава методом гидротермального синтеза.

Для оценки размеров наночастиц кафедра располагает оборудованием: Анализатор размеров частиц. Принцип измерения основан на динамическом рассеянии света.


Объект исследования

Методика проведения эксперимента

Электронные фотографии частиц тонкодисперсного кварца

Метод динамического рассеяния света и его реализация в приборе Horiba LB-550

Метод динамического рассеяния света основан на анализе характера рассеяния пучка излучения, прошедшего через образец, и используется для определения размеров частиц.

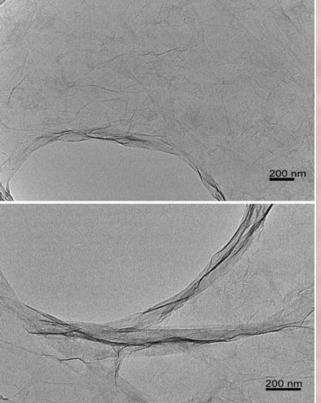
Реализация метода в приборе Horiba LB-550.

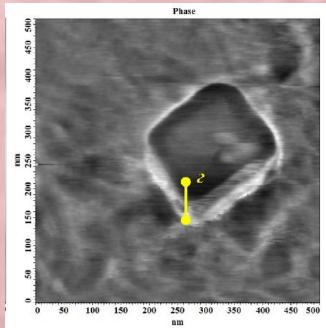
Преимущества:

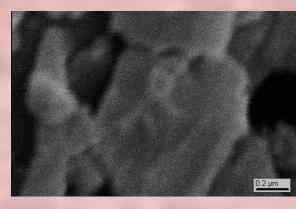
- •Достаточно высокая скорость получения данных.
- •Легкость подготовки образцов.
- •Возможность исследования суспензий частиц вещества с различной концентрацией в широком диапазоне изменения их размеров.

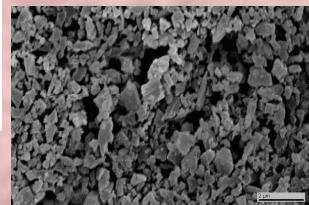
Недостатки:

Предполагается, что все исследуемые частицы имеют сферическую форму. Результаты обработки эксперимента не содержат информации о реальной форме частиц.

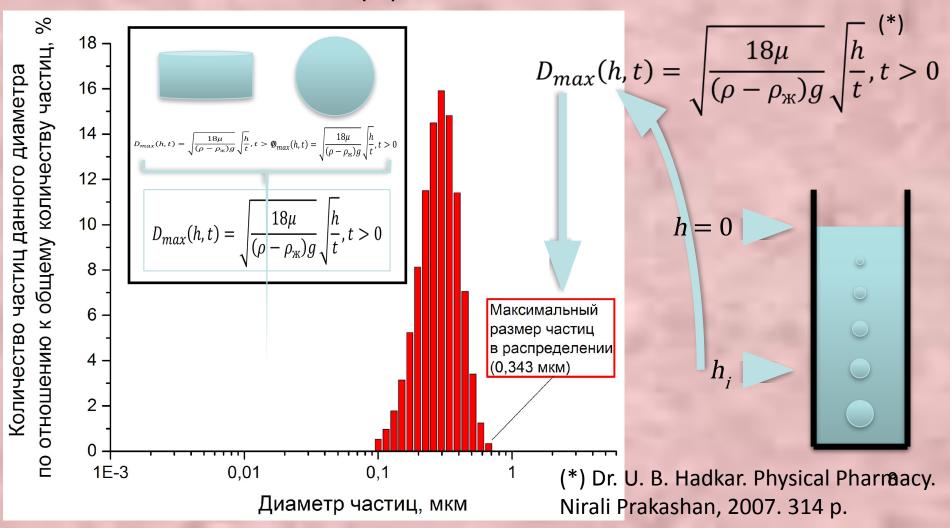


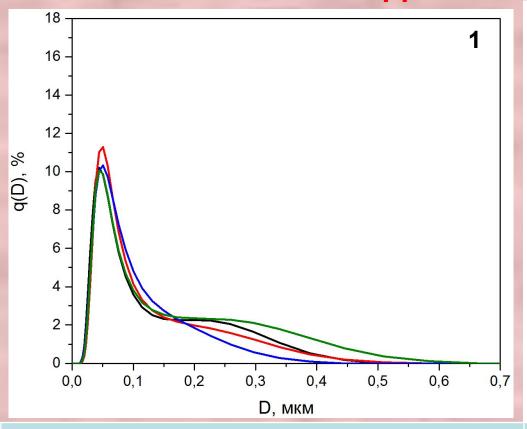

арттин.

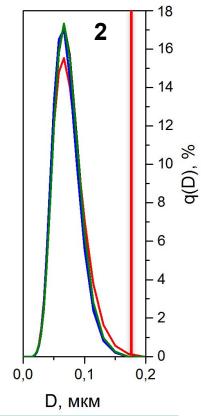

Объекты исследования – водные суспензии частиц


	Оксид графена (*)	Бемит (**), γ-AlO(OH)	Диоксид кремния, SiO ₂
Толщина, нм	1	25-40	100-500
Ребро, нм	200-500	100-400	100-900
Хар. отн-е	200-500	2,5-16	~1
Примемание //pro	du TtOHKNE o RIJZQTMH5 html	Пластинки	Компактная форма

(**) Кириллова С.А., Смирнов А.В., Федоров Б.А., Альмяшев В.И., Красилин А.А., Бугров А.Н., Гареев К.Г., Грачева И.Е. Морфология и размерные параметры нанокристаллов бемита, полученных в гидротермальных условиях // Наносистемы: физика, химия, математика. 2012. Т. 3, №4. С.101-113.




Методика исследования


При помощи прибора Horiba LB-550 можно исследовать седиментацию частиц в суспензии.

Распределение частиц в суспензии по размерам в процессе седиментации зависит от формы этих частиц.

Экспериментальные данные (*) Коллоидные частицы Ag

ут	

10	0 T
20	48
30	59
40	68
50	76

10

(D_{max}) _{теор.,}

34

D _{max,}	h, мм
100	87
120	125
140	170
160	223
180	282

10

t = 0 t_{седим.} = 21 сут

• Выявлено совпадение значений максимального размера

частиц в распределении, полученных на приборе Horiba LB-550 и рассчитанных по теоретической зависимости. ???

Исходное состояние

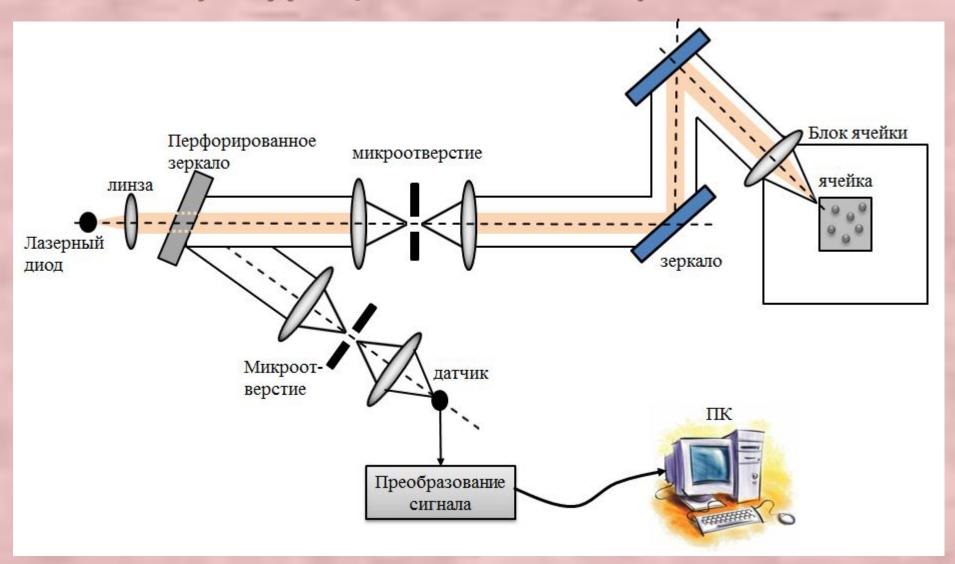
Анализатор размера частиц Horiba LB – 550

Технические характеристики прибора:

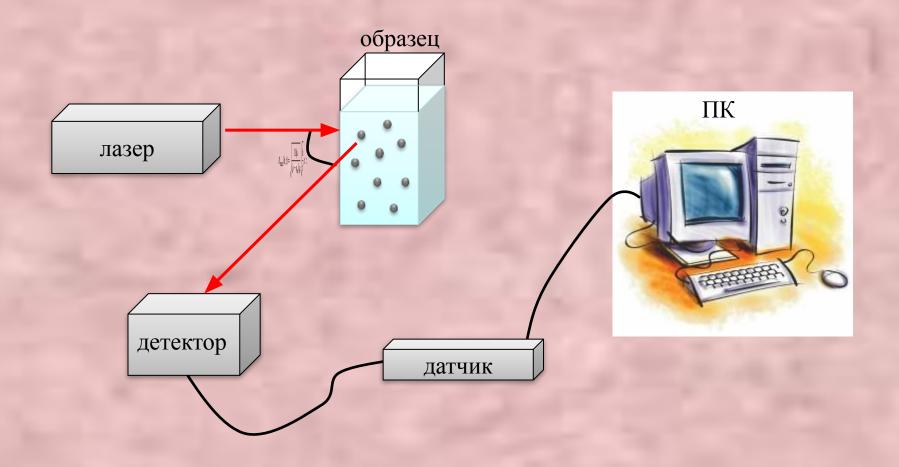
- Принцип измерения: основан на динамическом рассеянии света;
- размера частиц: от 1 нм до 6 мкм;
- ♦ Количество пробной жидкости необходимой для измерения: от 2 мл до 4 мл;

 100

№Источник излучения: лазерный диод 650 нм, 5 мВт.


Цель работы

Отработка методики проведения исследования водных неорганических суспензий наночастиц при использовании анализатора размера частиц Horiba LB - 550.


Оценка размеров частиц водных суспензий при использовании различных методов:

- Метод динамического рассеяния
- Процесс седиментации
- математическое моделирование
- электронная микроскопия

Конфигурация анализатора LB - 550

Принципиальная блок-схема анализатора размера частиц

Релеевское рассеяние

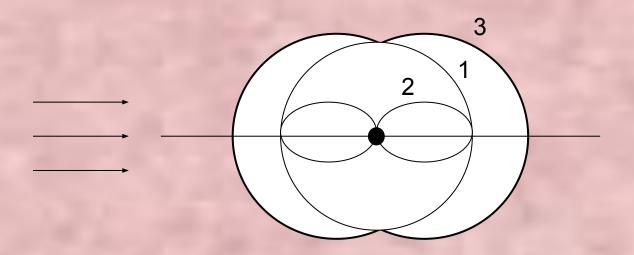


Диаграмма интенсивности рассеянного света:

- *1.* \vec{E} ⊥
- 2. \overrightarrow{E}
- 3. \overrightarrow{E} случайная

Метод динамического рассеяния света

Путем анализа флуктуаций рассеянного света данный метод позволяет определить коэффициент диффузии и размер частиц.

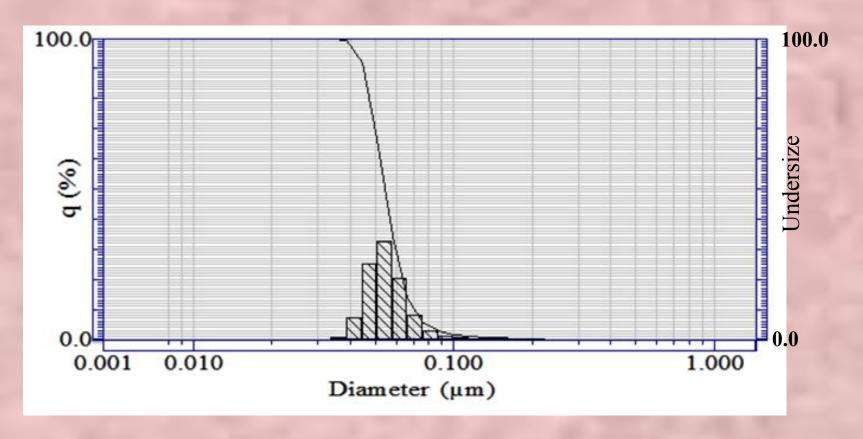
Размер частиц определяется с помощью формулы Стокса-Эйнштейна, которая связывает размер частиц, коэффициентом диффузии и вязкость жидкости.

$$D = \frac{k_B T}{3 \pi \eta d}$$

D – диаметр частиц;

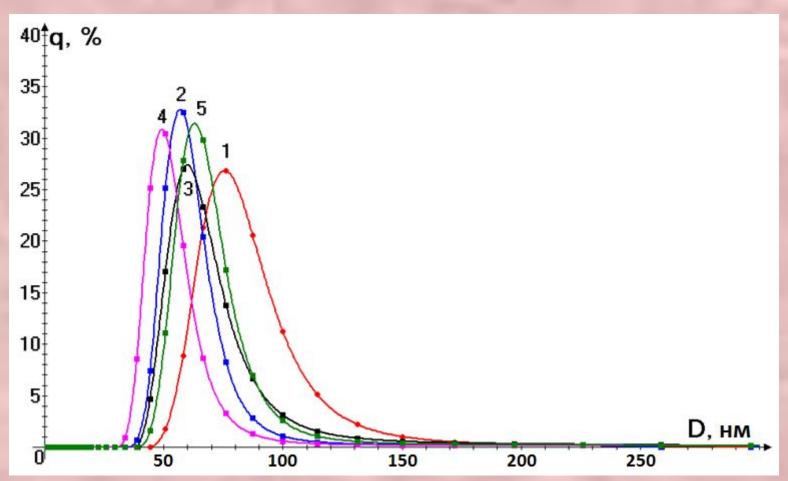
d - коэффициент диффузии частиц;

 \mathbf{k}_{B} - константа Больцмана;


Т - абсолютная температура;

η – сдвиговая вязкость среды, в которой взвешены частицы.

$$d = \frac{k_B T}{6 \pi \eta R}$$


формула Стокса-Эйнштейна

Гистограмма на дисплее ПК

Распределение частиц по размерам в исследуемом образце, выводимое на экран компьютера: q - количество частиц данного диаметра по отношению к общему количеству частиц, D - диаметр наночастиц.

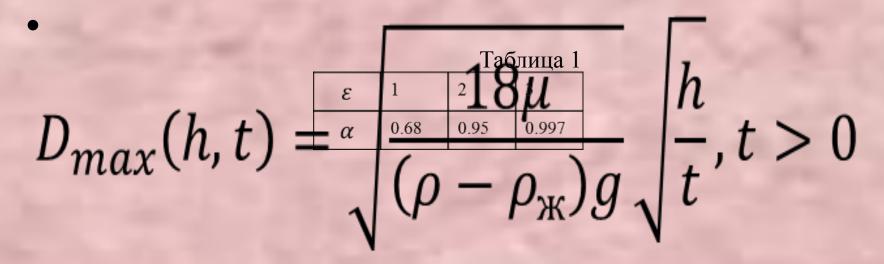
Обработка гистограмм

Распределение частиц по размерам в коллоидном растворе серебра - серия из пяти измерений.

Определение среднего размера частиц

$$D_{max}(h,t) = \sqrt{rac{18\mu}{(
ho-
ho_{
m W})g}\sqrt{rac{h}{t}}}, t>0$$
 $ar{D} = \sum \{q(J) imes D(J)\} \div \sum \{q(J)\},$

D(J) – типовой размер (в мкм) в J-ом диапазоне размеров частиц.


$$\overline{D_{\Sigma}} = \frac{\sum_{i=1}^{n} \overline{D}}{n}$$

$$\sigma = \sqrt{\sum_{i=1}^{n} \frac{(D_i - \overline{D})^2}{n-1}}$$
 Среднеквадратическое отклонение

Оценка погрешности при определении среднего размера частиц

$$D_{max}(h,t) = \sqrt{\frac{18\mu}{(\rho - \rho_{\mathcal{K}})g}} \sqrt{\frac{h}{t}}, t > 0$$

$$\Delta \overline{D}_{\Sigma} = \varepsilon \frac{\sigma}{\sqrt{n}} \qquad D_{max}(h, t) = \sqrt{\frac{18\mu}{(\rho - \rho_{\mathcal{K}})g}} \sqrt{\frac{h}{t}}, t > 0$$

Параметры распределения частиц по размерам, оцениваемые в лабораторной работе

Гле I – номер лиапазона размеров частиц в распределении;

$$\overline{D} = \sum \{q(J) \times D(J)\} \div \sum \{q(J)\},$$
 спределения по плотности (%);

X(J) – типовой размер (в мкм) в J-ом диапазоне размеров частиц.

Среднеарифметическое значение характерного размера частиц в различных измерениях.

№ измерения	$oldsymbol{\overline{D}}$, MKM
1	0.082
2	0.061
3	0.068
4	0.054
5	0.069

$$\overline{D_o} = \frac{\sum_{i=1}^n \overline{D}}{n} \quad (2) \qquad \overline{D_o} = 0.067$$

$$\Delta D_o = \sqrt{\sum_{i=1}^n \frac{(D_i - \overline{D})^2}{n-1}} \tag{3}$$

$$\overline{D_o} = 0.067$$

$$\Delta D_o = 0.010$$

Таким образом,
$$\overline{D}=(\overline{D_o}\pm\Delta D_o)$$
 мкм $=(\overline{D_o}\pm\Delta D_o)$ нм $\overline{D}=(0.067\pm0.010)$ мкм $\approx(67\pm10)$ нм