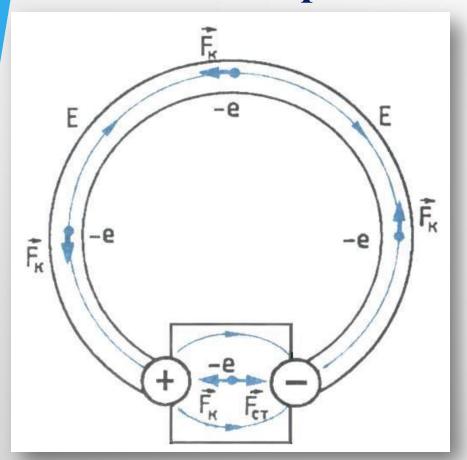
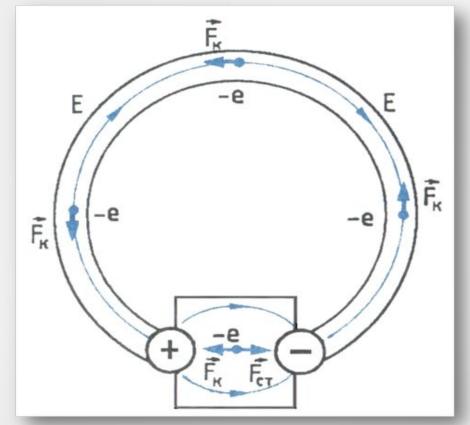

Электродвижущая сила.


Закон Ома для полной цепи.

Соединим проводником два металлических шарика, несущих заряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток.

Но этот ток будет очень кратковременным. Потенциалы шариков станут одинаковыми, электрическое поле исчезнет.

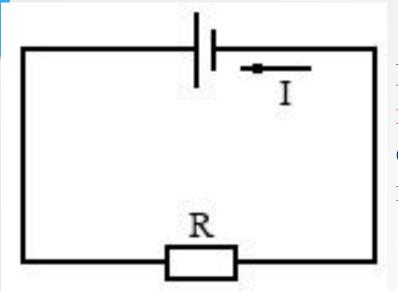

Сторонние силы

Чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство (источник тока).

В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектрического происхождения.

Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительного заряженного электрода к отрицательному), а во всей остальной цепи их приводит в движение электрическое поле.


Электродвижущая сила

Действие сторонних сил характеризуется физической величиной, называемой электродвижущей силой (сокращённо <u>ЭДС</u>).

Электродвижущая сила в замкнутом контуре представляет собой отношение работы сторонних сил при перемещении заряда вдоль контура к заряду:

$$\varepsilon = \frac{Ac\tau}{q}$$

ЭДС выражают в вольтах: [E] = Дж/Кл = B

Рассмотрим простейшую полную (замкнутую) цепь, состоящую из источника тока и резистора сопротивлением R.

 \mathcal{E} – ЭДС источника тока,

r – внутреннее сопротивление источника тока,

R – внешнее сопротивление цепи,

R + r — полное сопротивление цепи.

Сила тока в полной цепи равна отношению ЭДС цепи к её

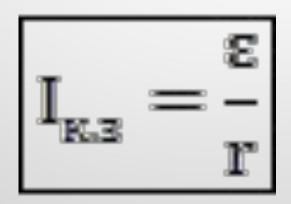
полному сопротивлению.

$$I = \frac{\varepsilon}{R+r}$$

Закон Ома для полной цепи

I = -

ЭДСэлектродвижущая сила источника тока (B)


Сопротивление нагрузки (Ом)

R + r

Внутреннее сопротивление источника тока (Ом)

Короткое замыкание

Короткое замыкание – явление, когда сопротив ление во внешней цепи по каким-либо причинам стремится к нулю:

Ток короткого замыкания из-за того, что внутрен нее сопротивление источников мало по сравне нию с сопротивлением внешним, как правило, чрезвычайно велик. Из-за этого выделяется очень большое количество теплоты, что может стать причиной обрывов цепи, пожаров и т. д.

Для предотвращения подобного используются предохранители

