# ВАКЦИНЫ

Сокращенный вариант



ВАКЦИНЫ – антигенные препараты или их аналоги для создания искусственного активного иммунитета с целью профилактики и лечения инфекционных и некоторых неинфекционных заболеваний



#### ВАКЦИНЫ

#### Живые

Туберкулезная (БЦЖ); Сибиреязвенная; Полиомиелитная пероральная; Гриппозная (для интраназального применения)

#### Генно-инженерные

Гепатит В; папилломавирус

## **Инактивированные Корпускулярные**

Брюшнотифозная спиртовая; Антирабическая; Полиомиелитная

#### Химические

Менингококковая; Холерная (холерогенанатоксин+Оантиген); Гриппозная

#### **Анатоксины**

АД; АС; АДС; АДС-М

#### Ассоциированные

АКДС; ММК

## живые вакцины

- Живые вакцины изготовляют на основе ослабленных (аттенуированных) штаммов микроорганизма со стойко закрепленной авирулентностью (безвредностью)
- Вакцинный штамм после введения размножается в организме привитого и вызывает вакцинальный инфекционный процесс, котоу большинства привитых протекает без выраженных клинических симптомов и приводит к формированию стойкого иммунитета
- Вакцинация производится, как правило, однократно только с профилактической целью
- □ Аттенуация снижение вирулентности при культивировании в неблагоприятных условиях или на неприродном хозяине

## Живые вакцины

#### Дивергентные

получают на основе непатогенных штаммов микроорганизмов, имеющих общие протективные антигены с патогенными для человека возбудителями инфекционных болезней (вакцина против натуральной оспы человека - используется вирус оспы коровы, вакцина БЦЖ - используются микобактерии бычьего типа)

#### **Рекомбинантные**

на основе получения непатогенных для человека рекомбинантных штаммов, несущих гены протективных антигенов патогенных микробов и способных при введении в организм человека размножаться, синтезировать специфический антиген и создавать иммунитет к патогенному возбудителю.

#### **Аттенуированные**

содержат штаммы патогенных м/о, утративших вирулентность

## живые вакцины

иммунитет

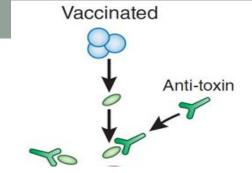
- □ Преимущества живых вакцин: высокая иммуногенность (формируется длительный и напряженный иммунитет); при пероральном (полиомиелитная) и интраназальном (гриппозная) введении формируется и местный
- □ Недостатки живых вакцин: возврат патогенности, остаточная вирулентность, неполная инактивация, часто содержат микробы-загрязнители (контаминанты), требуют специальных условий хранения

<u>Примеры:</u> вакцины против краснухи (Рудивакс), кори (Рувакс), полиомиелита (Полио Сэбин Веро), туберкулеза (БЦЖ), паротита (Имовакс Орейон).

## Инактивированные (убитые) корпускулярные вакцины



- □ Представляют собой бактерии или вирусы, инактивированные химическим (формалин, спирт, фенол) или физическим (тепло, радиация, ультрафиолетовое облучение) воздействием
- □ Создают менее напряженный иммунитет требуется 2-3-х-кратное введение
- □ Преимущества: не способны вызвать заболевание; легче дозировать, лучше очищать, они длительно хранятся и менее чувствительны к температурным колебаниям
- ☐ Недостатки: вызывают иммунный ответ только гуморального типа;
  обладают выраженной токсичностью и реактогенностью


**Примеры**: брюшнотифозная спиртовая вакцина, коклюшная (коклюшный компонент АКДС и Тетракок), лептоспирозная, антирабическая, гриппозные цельновирионные, вакцины против энцефалита, против гепатита А (Аваксим), инактивированная полиовакцина (Имовакс Полио или как компонент вакцины Тетракок)

# **Инактивированные лечебные** вакцины

#### Примеры:

- Бруцеллезная
- Гонококковая
- Стафилококковая
- Герпетическая

### **Анатоксины**



modified

- □ Анатоксины препараты, полученные из бактериальных экзотоксинов, полностью лишенные токсических свойств, но сохранившие антигенные и иммуногенные свойства
- □ Получение: экзотоксины бактерий инкубируют с 0,3—0,4% раствором формалина в термостате при 37—40°С в течение 3—4 недель. Концентрированный препарат сорбируют на окиси алюминия
- □ <u>Применение:</u> создание антитоксического иммунитета при токсинемических заболеваниях

Примеры: АД – адсорбированный дифтерийный анатоксин, АС-адсорбированный столбнячный анатоксин; АДС/АДС-М - адсорбированный дифтерийно-столбнячный анатоксин/со сниженной концентрацией аг для ослабленных/аллергизованных детей

## Ассоциированные вакцины

- Представляют собой сочетание различных типов вакцин
- Предназначены для одновременной иммунизации против различных инфекций
- □ Содержат и анатоксины, и инактивированные вакцины в иммуногенных дозировках
- □ Примеры: АКДС адсорбированная коклюшно-дифтерийностолбнячная вакцина ( взвесь убитых коклюшных палочек – инактивированная корпускулярная вакцина и 2 анатоксина: дифтерийный и столбнячный, сорбированные на окиси алюминия)
   ММК – тривакцина для профилактики кори, эпидемического паротита и краснухи – содержит смесь живых аттенуированных штаммов вирусов кори, паротита и краснухи.

## ХИМИЧЕСКИЕ

- □ Создаются из <u>антигенных компонентов</u>, извлеченных из микробной клетки
- Химические вакцины не содержат «балласта» и наименее реактогенны
- □ <u>Примеры:</u> полисахаридные вакцины против <u>менингококковой инфекции</u> групп A и C (Менинго A+C), гемофилюс инфлюенца типа b (Акт-ХИБ), <u>пневмомококковой инфекции</u> (Пневмо 23), вакцина с Vi-антигеном брюшнотифозных бактерий (Тифим Ви), ацеллюлярные коклюшные вакцины
- □ Бактериальные полисахариды являются тимуснезависимыми антигенами, неспособными к формированию Т-клеточной иммунологической памяти (особенно
- у детей), в связи с чем используют их конъюгаты с белковым носителем (дифтерийным или столбнячным анатоксином в количестве, не стимулирующем выработку соответствующих антител, или с белком самого микроба, например, наружной оболочки пневмококка) это конъюгированные вакцины

Примечание: конъюгированные вакцины не следует путать с препаратами ассоциированных вакцин, содержащих и анатоксины, и инактивированные вакцины

## Субъединичные вакцины

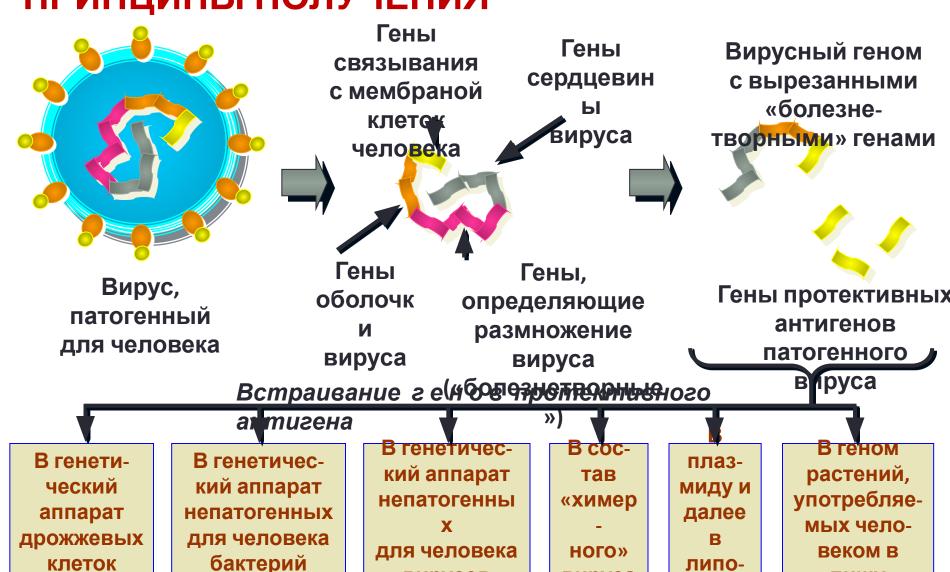
- □ Содержат белковые компонентны возбудителя
- Из цельных вирионов выделяют протективные антигены
- □ Полученные таким путем субъединичные вакцины не содержат геномов возбудителей и балластных антигенов, обладают минимальной реактогенностью, однако иммуногенные свойства их обычно слабее, чем

V ПЕПЬНОВИВИОННЫХ Ва**мыныя вакцин для профилактики** Цельновирионные вакцины








Ваксигри

## Генно-инженерные вакцины

Генно-инженерные вакцины содержат антигены возбудителей, полученные с использованием методов генной инженерии, и включают только высокоиммуногенные компоненты, способствующие формированию защитного иммунитета.

- Примеры:
- Вакцина для профилактики гепатита В
- Вакцина для профилактики бешенства (антирабическая рекомбинантная)
- □ Вакцина для профилактики папилломавируса

# ГЕННО-ИНЖЕНЕРНЫЕ ВАКЦИНЫ: ПРИНЦИПЫ ПОЛУЧЕНИЯ



ВИРУСОЕ

вируса

COMY

пищу

## Национальный календарь прививок

| Вакцина Возраст              | 12<br>часов | 3-7<br>дней       | 1 мес. | 2 мес. | 3 мес.       | 4,5<br>mec.  | 6 мес.       | 12<br>мес. | 18<br>Mec. | 20<br>Mec. | 6 лет | 7 лет     | 14<br>лет      |
|------------------------------|-------------|-------------------|--------|--------|--------------|--------------|--------------|------------|------------|------------|-------|-----------|----------------|
| Туберкулёз                   |             | БЦЖ,<br>БЦЖ-<br>М |        |        |              |              |              |            |            |            |       | 11        | *1             |
| Коклюш Дифтерия<br>Столбняк  |             |                   |        |        | АКДС         | АКДС         | АКДС         |            | АКДС       |            |       | АДС-<br>М | АДС<br>М<br>*2 |
| Полиомиелит                  |             |                   |        |        | ОПВ<br>(ИПВ) | OUB<br>(NUB) | ОПВ<br>(ИПВ) |            | ONB        | ONB        |       |           | ONE            |
| Корь Краснуха<br>Эпидпаротит |             |                   |        |        |              |              |              | *4         |            |            | ^4    |           |                |
| Гепатит В                    |             |                   | *5     |        | *5           |              |              |            | 2          |            |       |           |                |
| Гепатит В*                   | *6          |                   | *6     | *6     |              |              |              | *6         |            |            |       |           |                |
| Грипп                        |             |                   |        |        |              |              |              |            | -7         |            |       |           |                |
| Вакцина Возраст              | 12<br>часов | 4-7<br>дней       | 1 мес. | 2 мес. | 3 мес.       | 4 мес.       | 5 мес.       | 12<br>Mec. | 18<br>Mec. | 20<br>mec. | 6 лет | 7 лет     | 14<br>лет      |

<sup>\*5</sup> В разных источниках приводятся две разные схемы: 0-1-6 и 0-3-6. Соответственно, вторая вакцинацияот гепатита В проходит или в 1, или в 3 месяца. Считается, что «прививки по схеме 0-3-6 месяцев позволят использовать комбинированные вакцины, уменьшив инъекционную нагрузку».

Данная схема прививок используется, если ребенок рожден от матери-носителя гепатита В.

Таблица 1 Защитные и максимальные титры антител у привитых (Медуницин Н. В., 2012)

| Инфекции           | Титры антител | Метод индикации    |         |  |  |
|--------------------|---------------|--------------------|---------|--|--|
|                    | Защитный титр | Максимальные титры | антител |  |  |
| Дифтерия           | 1:40          | ≥ 1:640            | РПГА    |  |  |
| Столбняк           | 1:20          | ≥ 1:320            | РПГА    |  |  |
| Коклюш             | 1:160         | ≥ 1:2560           | PA      |  |  |
| Корь               | 1:10          | ≥ 1:80             | РНГА    |  |  |
|                    | 1:4           | ≥ 1:64             | РТГА    |  |  |
| Паротит            | 1:10          | ≥ 1:80             | РТГА    |  |  |
| Гепатит В          | 0,01 МЕ/мл    | ≥ 10 МЕ/мл         | ИФА     |  |  |
| Клещевой энцефалит | 1:20          | ≥ 1:60             | РТГА    |  |  |
| Грипп              | 1:40          | ≥ 1:1260           | РТГА    |  |  |

### Оценка коллективного иммунитета к управляемым инфекциям (Медуницин Н. В., 2012)

Таблица 2

| Инфекции                 | Методы<br>определения<br>антител | Контингент                             | Наличие<br>антител | Допустимый процент<br>вакцинированных<br>с уровнем антител<br>ниже защитного |  |
|--------------------------|----------------------------------|----------------------------------------|--------------------|------------------------------------------------------------------------------|--|
| Дифтерия,<br>столбняк    | РПГА                             | Дети                                   | < 1:20             | ≤ 10%                                                                        |  |
|                          |                                  | Взрослые                               | Серонегативные     | ≤ 20%                                                                        |  |
| Корь                     | ИФА                              | Дети Серонегатив                       |                    | ≤ 7%                                                                         |  |
| Краснуха                 | ИФА                              | Дети                                   | Серонегативные     | ≤ 4%                                                                         |  |
| Паротит<br>эпидемический | ИФА                              | Дети,<br>вакцинированные<br>однократно | Серонегативные     | ≤ 15%                                                                        |  |
|                          |                                  | Дети,<br>вакцинированные<br>двукратно  | Серонегативные     | ≤ 10%                                                                        |  |
| Полиомиелит РН           |                                  | Дети                                   | Серонегативные     | ≤ 20% к каждому<br>штамму                                                    |  |