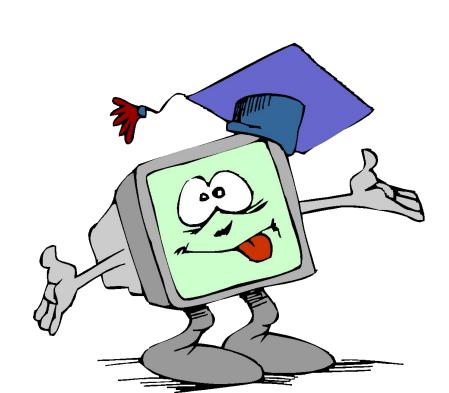
рациональным показателем и ее свойства.



Определение

□ Степенью числа а >0 с рациональным

<u>p</u>

показателем r^{Q} , где p— целое число,

а q-натуральное $(q \ge 2)$, называется число p

 $a^{\frac{p}{q}} = \sqrt[q]{a^p}$

T.e.

Свойства степени с рациональным

показателем.

При a > 0, b > 0, p и q рациональные числа:

$$a^p \cdot a^q = a^{p+q}$$

$$\frac{a^p}{a^q} = a^{p-q}$$

$$(a^p)^q = a^{pq}$$

$$(ab)^p = a^p \cdot b^p$$

$$\left(\frac{a}{b}\right)^p = \frac{a^p}{b^p}$$

дробным показателем в виде корня:

1.
$$2^{\frac{2}{3}} = \sqrt[3]{2^2}$$

2.
$$3^{-\frac{1}{3}} = \frac{1}{\frac{1}{3}} = \frac{1}{\sqrt[3]{3}}$$
3. $(-8)_{1}^{1,5} = \text{He umeem}$
4. $5a^{\frac{1}{2}} = 5\sqrt[3]{a}$

3.
$$(-8)_{1}^{1,5} =$$
 He umeem

4.
$$5a^{-2} = 5\sqrt{a}$$

5.
$$(x-y)^{\frac{2}{3}} = \sqrt[3]{(x-y)^2}$$

степени с дробным показателем:

1.
$$\sqrt{7} = 7^{\frac{1}{2}}$$

2.
$$\sqrt[9]{a^4} = a^{\frac{4}{9}}$$

$$\frac{3}{\sqrt{2}} = 3 \cdot 2^{-\frac{1}{2}}$$

4.
$$b\sqrt{b} = b \cdot b^{\frac{1}{2}} = b^{1,5}$$

5.
$$\sqrt{(x+y)^3} = (x+y)^{\frac{3}{2}} = (x+y)^{1,5}$$

Вычислите:

a)
$$(-\sqrt[4]{11})^4$$

$$^{\circ}$$
 $16^{\frac{3}{4}}$

a)
$$(-\sqrt[4]{11})^4$$
 r) $16^{\frac{3}{4}}$ ж) $((\sqrt{2})^{\sqrt{2}})^{\sqrt{2}}$

б)
$$7\sqrt[8]{(-3)^8}$$
 Д) $243^{0,4}$

B)
$$\sqrt[6]{64^2}$$

e)
$$8^{\sqrt{2}}/2^{3\sqrt{2}}$$

