
4. Java OOP

6. Inner Classes

Nested Classes (1 of 2)

• A nested class is a class defined within
another class:

class OuterClass {
 ...

class NestedClass {
 ...

}
}
* 2Infopulse Training Center

Nested Classes (2 of 2)

• A nested class is a member of its enclosing
class

• Non-static nested classes (inner classes)
have access to other members of the
enclosing class, even if they are declared
private

• Static nested classes do not have access
to other instance members of the enclosing
class

* Infopulse Training Center 3

Why Use Nested Classes?

• It is a way of logically grouping classes
that are only used in one place.

• It increases encapsulation.
• Nested classes can lead to more readable

and maintainable code (places the code
closer to where it is used)

* Infopulse Training Center 4

Static Nested Classes (1 of 2)

• A static nested class is associated with its
outer class

• Like static class methods, a static nested
class cannot refer directly to instance
variables or methods defined in its
enclosing class - it can use them only
through an object reference

* Infopulse Training Center 5

Static Nested Classes (2 of 2)

• Static nested classes are accessed using
the enclosing class name:
OuterClass.StaticNestedClass

• To create an object for the static nested
class, use this syntax:
OuterClass.StaticNestedClass nestedObject =
 new OuterClass.StaticNestedClass();

* Infopulse Training Center 6

Inner Classes (1 of 2)

• An inner class has direct access to that
object's methods and fields

• It cannot define any static members itself
• Objects that are instances of an inner

class exist within an instance of the outer
class

* Infopulse Training Center 7

Inner Classes (2 of 2)

• To instantiate an inner class, you must first
instantiate the outer class. Then, create
the inner object within the outer object with
this syntax:
outerClass.InnerClass innerObject = outerObject.new
InnerClass();

* Infopulse Training Center 8

Local Inner Classes

• Inner classes can be created inside code
blocks, typically inside the body of a method

• A local inner class cannot have an access
specifier

• It does have access to the final variables in
the current code block and all the members
of the enclosing class

* Infopulse Training Center 9

Anonymous Classes

• Anonymous classes combine the process
of definition and instantiation into a single
step

• As these classes do not have a name, an
instance of the class can only be created
together with the definition

* Infopulse Training Center 10

Anonymous Class Example I

new Thread(new Runnable() {
 public void run() {
 ...
 }
}).start();

* Infopulse Training Center 11

Anonymous Class Example II

JFrame frame = new JFrame("AnonimDemo2");
frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {

System.exit(0);
 }
});

* Infopulse Training Center 12

Anonymous Classes Use

• For creating objects on the fly in contexts
such as:
– the value in a return statement
– an argument in a method call
– in initialization of variables
– to implement event listeners in GUI-based

applications

* Infopulse Training Center 13

Manuals

• http://docs.oracle.com/javase/tutorial/java/j
avaOO/nested.html

* Infopulse Training Center 14

