
Reverse engineering an 
obfuscated .Net application

Travis Altman

RVAsec

June 2012

1



Huge thanks

Curtis Mechling

http://twitter.com/#!/curtismechling

2



Outline

• This talk is for all audiences, no experience 
and seasoned .Net developers

• I’ll be covering basic technology behind a .Net 
application

• I’ll discuss simple and more complex ways to 
reverse an obfuscated .Net application

• Demo reversing an obfuscated .Net app

3



Steps to reverse .Net app

1. Run the application to understand 
functionality

2. Decompile the application
3. Review source code and hone in on the 

functionality you’re trying to understand
4. If obfuscated look for key constructs to 

understand functionality
5. Optional:  Modify app to achieve your 

desired functionality

4



Topic not new

• Many others before me have discussed the 
insecurities of .Net applications

• Mark Pearl
– http://1dl.us/va3

• Jon McCoy
– http://digitalbodyguard.com/

• Cory Foy
– http://1dl.us/va4

5



Reversing and obfuscation

• What exactly is reversing and obfuscation?

• Reversing example
– You’re given an EXE and tasked with determining 

how it performs its functionality, aka secret sauce

– Could also mean you’re trying to subvert 
functionality such as licensing

• Obfuscation
– Equivalent to hiding

6



.Net basics

• .Net, it’s a framework, nuff said

• Blanket term for microsoft family of 
technologies

• Most people think .Net web applications but 
that’s not the focus of this discussion

• The focus of this talk are stand alone 
executables written in C sharp although the 
programming language doesn’t really matter

7



.Net basics

• A stand alone executable built for .Net will run 
inside the application virtual machine, which 
sometimes may be referred to as the CLR 
(common language runtime)

• The .Net application virtual machine is a 
requirement for all .Net executables

8



Executables

• There are two main kinds of EXE’s
– Compiled and interpreted

• Compiled applications usually require an 
install, e.g Next > Next

• Interpreted applications require an application 
virtual machine

• So first you’ll have to install the application 
virtual machine before running the 
interpreted application

9



Executables

• Compiled executables are often built with a higher 
programming language, such as C++, which then 
gets translated to a lower level language known as 
assembly machine language

• Due to the nature of compiled executables they 
are “harder” to reverse back to original source 
because of different compilers, architectures, and 
lack of information during compilation

10



Executables

• Interpreted executables, such as java and .Net, 
are much easier to reverse

• The interpreted compilation (JIT) process is 
more structured and retains more information 
about the executable

• Because of this it’s trivial to get original source 
code from executable

• I repeat, getting source code is trivial

11



Obfuscation

• Because it’s trivial to get source code from a 
.Net application developers will use 
obfuscation to hide a majority of their source 
code

• There are a number of tools that will 
obfuscate your .Net application

• Most obfuscators will hide things such as 
variable and class names

12



Determine type executable

• There are a number of ways to determine the 
type of executable you’re dealing with

• The tool I like the best is CFF explorer
– http://www.ntcore.com/exsuite.php

• Once installed you can simply right click on the 
executable to view the information via CFF 
explorer

13



Firefox with CFF explorer

14



Firefox with CFF explorer

15



GuessPassword.exe in CFF explorer

• GuessPassword.exe is a simple .Net 
application I wrote to check a password

• We’ll continue to use GuessPassword.exe

16



Next step > decompile

• Now you’ve identified the executable was built 
using .Net

• Next step is to decompile
• There are two tools that I like to use to 

decompile
• Reflector
– www.reflector.net (paid)

• ILSpy
– http://wiki.sharpdevelop.net/ILSpy.ashx (free)

17



ILSpy

18



Reflector

19



Decompilation tips

• Only analyze your exe tree and ignore 
dependencies that get pulled in

20



Decompilation tips

• Only focus on the “real” code

• Real code located in pink bricks

21



SafeAsHouses.exe

• Let’s take a look at a real life example

• SafeAsHouses.exe can be downloaded from 
from either download.com or softpedia.com

• SafeAsHouses is a password keeper, it’s 
designed to keep all your passwords safe in 
one location

22



SafeAsHouses in ILSpy

23



SafeAsHouses in ILSpy

• So soon as we open SafeAsHouses.exe in ILSpy 
we see signs of obfuscation

• In the GuessPassword example we see the 
class names are clearly visible

• SafeAsHouses masks this information to make 
it harder to understand the underlying 
functionality of the application

24



GuessPassword vs SafeAsHouses

• Next let’s compare GuessPassword and 
SafeAsHouses in ILSpy

• First GuessPassword

25



GuessPassword vs SafeAsHouses

• SafeAsHouses

26



More obfuscation

• Here we see more signs of obfuscation

• In GuessPassword we see how things should 
look, we clearly get to see class names in the 
application

• In SafeAsHouses however things are hidden

• Instead of class names all we see are these 
grey boxes such as “STX”, “ETX”, etc

• STX, ETX, etc

27



Understanding the app

• Typically you would run the application first to 
get an idea of the functionality but wanted to 
show the obfuscation first

• Run the application

28



Understanding the app

• If we authenticate with the correct password 
we are granted access to the application

• Incorrect password we get denied

29



Items of interest

1. The application asks for input

2. Incorrect password presents a pop up stating 
“Password incorrect”

3. The application exits after you click OK when 
your password is incorrect

4. Successful authentication brings up another 
window

30



Items of interest

• The main idea is to take certain areas of 
interest inside the application and find that 
functionality

• Even if the application is obfuscated hopefully 
identifying an item of interest will lead us to 
the code we want to reverse

• I’ve highlighted four items of interest but you 
could easily focus on other areas

31



Searching for items of interest

• Now that we’ve done some recon and 
understand the type of functionality we want 
to go after we need to search for that

• There are a number of ways to search for 
items of interest but I’ll highlight two

1. Decompile all code into one text file

2. Use the Reflector plugin “Code search”

32



Decompile code into text file

33



Decompile code into text file

• Next choose File > Save Code

34



Decompile code into text file

• Then save the file as a “C# single file”

35



Decompile code into text file

• At this point you can use your favorite text 
editor to search through the decompiled code

• Disadvantage is that searching through a flat 
file doesn’t present a lot of context

• On the other hand it’s always handy to have a 
raw dump and the ability to save for historical 
purposes

36



Reflector code search plugin

• Reflector’s code search plugin is very convenient 
in that you don’t have to leave the reflector tool

• With the code search plugin you also don’t loose 
the context with where code functionality is 
located

• Using code search we’ll search for all four items of 
interest

• http://reflectoraddins.codeplex.com/wikipage?title=
CodeSearch&referringTitle=Home

37



Items of interest

1. The application asks for input

2. Incorrect password presents a pop up stating 
“Password incorrect”

3. The application exits after you click OK when 
your password is incorrect

4. Successful authentication brings up another 
window

38



Application asks for input

• A popular way of taking form input in a .Net 
application is through the text box class where 
the convention is “this.textBox1.Text”

• Here textBox1 is a variable name

• Most obfuscators will hide the variable name 
with something like “this.STX.Text”

• So better to search for “this.*.Text” inside the 
code search reflector plugin

39



Application asks for input

• Searching for this.*.Text revealed numerous hits, 
probably best to keep searching for different 
terms, you might also want to search for just 
*.Text

40



Pop up message

• A pop up box is typically done with the 
“MessageBox.Show” method

• Two arguments can be given to this method, 
window title and window message

• MessageBox.Show(“title”, “message”)

• Use code search to see how many message 
boxes are in the application, the idea is to 
hopefully pinpoint this functionality

41



Pop up message

• So quite a few hits on MessageBox.Show, let’s 
continue searching for other constructs

42



Pop up message

• The pop up message states “Password 
incorrect”

• We should search the code for strings like this

• No dice, the phrase “Password incorrect” must 
be obfuscated

43



Application closes

• If you enter an incorrect password you’ll get a 
pop up, after clicking OK the application will 
close

• .Net can handle this in a couple of ways, with 
Application.Exit and Environment.Exit

• Let’s search for these terms as well

44



Application closes

• Less results which means which means less 
manual reviewing of code

45



Successful authentication opens 
another window

• Probably the most popular way to show one 
window then hide another is to use the 
window.Show() and window.Hide() methods

• They are used in tandom

• Even though they are commonly used in 
tandom it’s a good idea to search for both 
terms

46



Successful authentication opens 
another window

• Only three hits, we’re money

47



Code search plugin

• Using this plugin we were able to narrow 
down to only three locations where our 
authentication functionality is most likely 
hiding

• Click on each result to view the obfuscated 
code

• Look for the other constructs, 
Environment.Exit, this.*.Text, etc

• Code search is case sensitive

48



First hit, found the functionality

49



Same code in ILSpy

50



Explanation of code

• Line 6: developer is assigning variable “a” to 
whatever you type into the text box

• Line 7: if statement comparing password values
• Line 17: if password is correct base.Hide will hide 

the login box
• Line 18: will show the main window
• Line 22: message box that tells you your password 

is incorrect
• Line 23: closes the application

51



Subverting authentication

• Now that we’ve found the code that performs the 
authentication we want to subvert that 
functionality to gain access without knowing the 
password

• There are two tools that will allow us modify the 
executables

• Graywolf 
– http://digitalbodyguard.com/GrayWolf.html

• Reflexil
– http://reflexil.net/

52



Reflexil

53



Reflexil

• The bottom half of the previous screen shot 
shows the reflexil plugin to reflector

• With reflexil we can edit the executable

• We’ll be editing content in the “Instructions” 
tab within reflexil

• These instructions are referred to as CIL 
(common intermediate language)

54



CIL

• Lower level language used by the .Net 
application virtual machine

• So your higher level programming, such as C#, 
gets converted to CIL (sometimes called IL)

• The CIL instructions will then be JIT compiled 
into native machine code at run time

• Opcodes are at the heart of CIL and tell the 
application what to do

55



CIL

• Not that important to understand all the 
technical details behind CIL

• On lines 01, 02, and 03 we can see these three 
lines are more than likely responsible for 
getting input from user via a text box

56



Modifying CIL

• Looking through the code and CIL we see an 
interesting instruction on line 07

• The operand to the instruction is 
“op_Equality” that compares passwords

• The next opcode instruction on line 08 is 
“brfalse”

• Stands for branch if false, so it’s the if 
statement

57



Modifying CIL

• You’ll also notice the operand for the opcode 
on line 08 is “->(36)”

• This means branch to line 36 if the password 
doesn’t match

• This branches all the way down to the 
message box functionality

• To break this functionality we can change the 
brfalse opcode to the opposite which is brtrue

58



Modifying CIL

• Right click on opcode and choose edit

59



Modifying CIL

• Next change to brtrue then click update

60



Modifying CIL

• Next right click on root tree and save

61



Patched executable

• Now you’ve successfully patched a .Net 
executable

• If we run this we can provide the incorrect 
password and successfully authenticate but if 
we provide the correct password the 
application will close

• We don’t have to stop there we can delete 
chunks of code to remove that functionality as 
well

62



Deleting code blocks

63



Delete code blocks

• Delete lines 1-28

• Save the patched application

• Run it again and now it won’t matter what 
password you type in because we’ve deleted 
that entire if statement that checks for the 
password

• Next open the patched application in reflector 
to see if the code block was deleted

64



Missing code block

65



Great success

• We’ve successfully modified the application to 
subvert authentication

• If we had obtained this executable from 
another user then we would have all their 
passwords

• Hopefully you see how easy it is to control and 
modify .Net applications to your heart’s 
content

66



Easier reversing via deobfuscation

• There is a slightly easier way to go about 
reversing an obfuscated .Net application

• If we can deobfuscate the obfuscated code 
then we’ll have a much easier time 
understanding the functionality of the 
application

• Luckily reflexil can deobfuscate many 
obfuscation tools

67



Reflexil deobfuscation

• Right click > Reflexil > Obfuscator search

68



Reflexil deobfuscation

• Next reflexil will try to determine the type of 
obfuscation used

• Here it successfully determined it was 
obfuscated with Eazfuscator.NET 3.2

69



Reflexil deobfuscation

• Next you save the executable, you can stick 
with the default *.Cleaned extension so you 
don’t accidentally write over the original exe

• Next open your saved SafeAsHouses.Cleaned 
in reflector to view deobfuscated code

70



Deobfuscated code

71



Deobfuscated code

• So reflexil actually does a nice job on getting 
us better source code

• It may not retrieve original variables or class 
names but it will at least name them var1, 
var2, etc to give better meaning

• In this case it actually revealed the pop up 
message of “Password incorrect” to whereas 
before that was obfuscated

72



Steps to reverse .Net app

1. Run the application to understand 
functionality

2. Decompile the application
3. Review source code and hone in on the 

functionality you’re trying to understand
4. If obfuscated look for key constructs to 

understand functionality
5. Optional:  Modify app to achieve your 

desired functionality

73



Wrapping up

• A standalone .Net executable will more than 
likely be very easy to decompile to get original 
source code

• Obfuscation techniques only make it a little bit 
harder to figure out the original source code

• If you want to save your intellectual property 
then don’t write the software that utilizes the 
.Net framework

74



Questions

http://twitter.com/#!/curtismechling

http://travisaltman.com

75


