Reverse engineering an
obfuscated .Net application

Travis Altman
RVAsec
June 2012

Huge thanks
Curtis Mechling

http://twitter.com/#!/curtismechlin

Outline

* This talk is for all audiences, no experience
and seasoned .Net developers

* I'll be covering basic technology behind a .Net
application

 I'll discuss simple and more complex ways to
reverse an obfuscated .Net application

 Demo reversing an obfuscated .Net app

Steps to reverse .Net app

Run the application to understand
functionality

Decompile the application

Review source code and hone in on the
functionality you’re trying to understand

If obfuscated look for key constructs to
understand functionality

Optional: Modify app to achieve your
desired functionality

Topic not new

* Many others before me have discussed the
insecurities of .Net applications

e Mark Pearl

— http://1dl.us/va3

* Jon McCoy

— http://digitalbodyguard.com/

* Cory Foy

— http://1dl.us/va4d

Reversing and obfuscation

* What exactly is reversing and obfuscation?

* Reversing example

— You’re given an EXE and tasked with determining
how it performs its functionality, aka secret sauce

— Could also mean you’re trying to subvert
functionality such as licensing

* Obfuscation
— Equivalent to hiding

.Net basics

* .Net, it’s a framework, nuff said

e Blanket term for microsoft family of
technologies

* Most people think .Net web applications but
that’s not the focus of this discussion

* The focus of this talk are stand alone
executables written in C sharp although the
programming language doesn’t really matter

.Net basics

* A stand alone executable built for .Net will run
inside the application virtual machine, which
sometimes may be referred to as the CLR
(common language runtime)

* The .Net application virtual machine is a

requirement for all .Net executables
E’;éj .InboxEx for Outlook o

1’| This setup requires the NET Framework version 4.0. Please install the .MET Framewor k
| and run this setup again. The .NET Framework can be obtained from the web. Would
you like to do this now?

Yes No |9
|

Executables

* There are two main kinds of EXE’s
— Compiled and interpreted

 Compiled applications usually require an
install, e.g Next > Next

* Interpreted applications require an application
virtual machine

* So first you’ll have to install the application
virtual machine before running the
interpreted application

Executables

 Compiled executables are often built with a higher
programming language, such as C++, which then
gets translated to a lower level language known as
assembly machine language

* Due to the nature of compiled executables they
are “harder” to reverse back to original source
because of different compilers, architectures, and
lack of information during compilation

Executables

Interpreted executables, such as java and .Net,
are much easier to reverse

The interpreted compilation (JIT) process is
more structured and retains more information
about the executable

Because of this it’s trivial to get original source
code from executable

| repeat, getting source code is trivial

ODbfuscation

* Because it’s trivial to get source code from a
.Net application developers will use
obfuscation to hide a majority of their source

code

e There are a number of tools that will
obfuscate your .Net application

* Most obfuscators will hide things such as
variable and class hames

Determine type executable

 There are a number of ways to determine the
type of executable you’re dealing with

* The tool | like the best is CFF explorer
— http://www.ntcore.com/exsuite.php

* Once installed you can simply right click on the
executable to view the information via CFF
explorer

Firefox with CFF explorer

Name

B

'O firefox

|

(&

el elele e e)e el

Date modified Type Size *
% d3dx9_43.dll 3/13/2012 4:38 AM Application extens...
dependentlibs.list 313/2012 4:38 AM LIST File
Open 4:39 AM Application
%, freebl3.chl Browse V_Vi_th _'N,ET Rgfledor 4:39 AM Recovered File Fra...
@) freebl3.dll Open with CFF Explorer | 4:39 AM Application extens... F
gkmedias. ® Run as administrator 4:39 AM Application extens...
install Troubleshoot compatibility 10:03 PM Text Document =
libEGL.dIl | [Edit with Notepad++ 4:39 AM Application extens...
libGLESv2. Unpin from Taskbar 4:39 AM Application extens...
Microsoft. Pin to Start Menu 4:38 AM MANIFEST File i
mozalloc.c Restore previous versions 4:39 AM Application extens...
mozglue.d 4:39 AM Application extens...
mozjs.dll Senditn ’ 4:39 AM Application extens...
mozsqlite3 Cut 4:30 AM Application extens...
msvema80. Copy 4:38 AM Application extens...
msvc;:8:).? i J%éj AM App!?cation extens... -
@ Delete ! ‘ k

14

Firefox with CFF explorer

w' CFF Explorer VI - [firefox.exe]
File Settings ?

B { e

Property Value
7 El.ﬁle: eSO £xn File Name C:\Program Files\Mozilla Firefox\firefox.exe
2] Dos Header
—] LE) Nt Headers File Type Portable Executable 32
fee ::3 g:ti::aald:; e File Info Microsoft Visual C++ 8
2] Data Directories [x] File Size 902.93 KB (924600 bytes)
=) Section Headers b} PE Size 896.00 KB (917504 bytes)
\.2) Import Directory

15

GuessPassword.exe in CFF explorer

* GuessPassword.exe is a simple .Net
application | wrote to check a password

e We'll continue to use GuessPassword.exe

& GuessPassword.exe

: Property Value
File Name C:\Users\travis\Documents\Visual Studio 2010\Projects\GuessPasswo..
File Type Portable Executable 32|.NET Assembly
File Info Nec match found.
File Size 8.00 KB (8192 bytes)

16

Next step > decompile

* Now you’ve identified the executable was built
using .Net

* Next step is to decompile

* There are two tools that | like to use to
decompile

* Reflector
— www.reflector.net (paid)

* ILSpy
— http://wiki.sharpdevelop.net/ILSpy.ashx (free)

ILSpy

File View Debugger Help

O U ELC| b c

-l P

g GuessPassword

il References
[Resources
{ -
= {} GuessPassword
= 4% Forml
«d Base Types
“$ Derived Types
59 buttonl : Button
;,39 components : IContainer
50 textBoxl : TextBox
‘¥ .ctor() : void
&% buttonl_Click(object, EventArgs) : void
2y Dispose(bool) : void
&% InitializeComponent() : void
= 3% Program
= & Base Types
% object
;ﬁ Main() : void
{} GuessPassword.Properties
+3 System.Windows.Forms
-3 mscorlib
-3 System
-3 System.Drawing

// C:\Users\travis\Documents\Visual Studi
// GuessPassword, Version=1.0.0.0, Cultur

// Entry point: GuessPassword.Program.Mai
// Architecture: x86

// Runtime:

using |.. |

[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:
[assembly:

.NET 4.0

AssemblyVersion("1.2.0.8")]
Debuggable(DebuggableAttribute
AssemblyCompany("")]
AssemblyConfiguration("")]
AssemblyCopyright("Copyright €
AssemblyDescription("")]
AssemblyFileVersion("1.2.0.8")
AssemblyProduct("GuessPassword
AssemblyTitle("GuessPassword")
AssemblyTrademark("")]
CompilationRelaxations(8)]
RuntimeCompatibility(WrapNonEx
ComVisible(false)]
Guid("1281978c-f709-497e-a293-
TargetFramework(".NETFramework

18

File Edit View Tools Help

0O0|2PHE | EE L[

|

v||.NET40 ~|| «

#

-2 System.Web (4.0.0.0)

<2 System.Drawing (4.0.0.0)

<2 System.Windows.Forms (4.0.0.0)
< System.ServiceModel (4.0.0.0)

BEHEEH

<23 System.Workflow.Runtime (4.0.0.0)
<23 System.Workflow.Activities (4.0.0.0)
+ 3 GuessPassword (1.0.0.0)
= W% GuessPassword.exe
«a] References
{} -
= {} GuessPassword
@ %
¥) Base Types
4 Derived Types
iy .ctor()
\.,3’\') buttonl_Click(Object, EventArg
;& Dispose(Boolean) : Void
.'_"9 InitializeComponent() : Void
g¥ buttonl : Button
g% components : IContainer
@ textBoxl : TextBox

0 ®

<23 System.Workflow.ComponentModel (4.0.0.0) =

e , %4 Forml

public class Form1: Form
{
// Fields
private Button buttonl;
private IContainer components;
private TextBox textBox1;

// Methods
public Form1();
private void buttonl_Click(object sender, EventArgs €);
protected override void Dispose(bool disposing);
private void InitializeComponent();

}

Expand Methods

19

+|

-

A

Decompilation tips

* Only analyze your exe tree and ignore
dependencies that get pulled in

o R = Focus

43 System.Windows.Forms
4d mscorlib

{3 System lgnore
4J System.Drawing

20

Decompilation tips

* Only focus on the “real” code
* Real code located in pink bricks

= {} GuessPassword
= “% Forml Pink bricks
. Base Types
"% Derived Types
5,9 buttonl : Butto

= & Bghe Types
B object

g Main) : void_

21

SafeAsHouses.exe

* Let’s take a look at a real life example

* SafeAsHouses.exe can be downloaded from
from either download.com or softpedia.com

* SafeAsHouses is a password keeper, it’s
designed to keep all your passwords safe in
one location

& SafeAsHouses

22

SafeAsHouses in ILSpy

= 43 GuessPassword

[«3] References

|1 Resources

= {} -

= {} GuessPassword
% Forml
®-4$ Program

+3 System
«3 mscorlib
«3 System.Drawing
= -3 SafeAsHouses
+ =2 References
1 Resoyr

No descriptions or names

il
-
el

[+

&=
! y e SEL
W 0 Céf W R

@
<

[+ +

[I S R S e S e S R e S

+
gg

Vo % 4

J

g% <Module>
{} PasswordSafe.Properties

[+

23

SafeAsHouses in ILSpy

* So soon as we open SafeAsHouses.exe in ILSpy
we see signs of obfuscation

* In the GuessPassword example we see the
class names are clearly visible

e SafeAsHouses masks this information to make
it harder to understand the underlying
functionality of the application

GuessPassword vs SafeAsHouses

* Next let’s compare GuessPassword and
SafeAsHouses in ILSpy

* First GuessPassword

«d| References
. Resources

{} -

{} GuessPassword
- 43

@ =% Program

{} GuessPassword.Properties :
|||

} System.Windows.Forms
} System
} mscorlib

1 Ciirdmimn Nemiiiiinm

(=l namespace GuessPassword

{

Dom Ocsl < namne
L(Li['(

9+

public class Forml : Form

{

private IContainer components;
private Button buttonil;
private TextBox textBoxl;
public Formi()...

private void buttonl_Click(ocbject sender, EventArgs e)...

protected coverride void Dispose(bool disposing)...
private void InitializeComponent()...

25

GuessPassword vs SafeAsHouses

e SafeAsHouses

“al References % pubh:.c' sealed class : Form
1 Resources S| 1
E{]} : rd private IContainer ;
g private Button :
{} GuessPassword o ’
e GomOr v private TextBox [Z.4;
“% Forml B private PictureBox [13;

® 3% Program
{} GuessPassword.Properties

private Label [[d5;
public EFi(). ..

:v ’]
System.Windows.Forms v privgie void Egpi(object , EventArgs)
System av prifate void [Fpi(object , EventArgs Nl
mscorlib a9 ivate voigy 2l¥i(object » EventArgs b .
: Diria v ‘private yA® |5 (object , EventArgs ;L
Sz:t;::gorj::: J _,:,0 privgh€ void Spi(object » KeyEventArgs)

ppatate void Epd(). . .|

private void [F4().. .|

private void [El8().. . |
private void [ld4(object Bigd, EventArgs EE). . .|
private s BS[Q; -
private void Epi(string Ejpl, stripe @)
praivate void ee().. . —
protected override void Dispose(bool sTX) N
private void E§().. .|

= References

[Resources

{} -

R |

7] gg -

E% —
= 3 Obfuscation
[+ *’fg }

— A

v
HHAHAHEHAHHHH NG HHHHAHHH

More obfuscation

Here we see more signs of obfuscation

n GuessPassword we see how things should
ook, we clearly get to see class names in the
application

In SafeAsHouses however things are hidden

Instead of class names all we see are these
grey boxes such as “STX", “ETX”, etc

STX, ETX, etc

Understanding the app

* Typically you would run the application first to
get an idea of the functionality but wanted to
show the obfuscation first

* Run the application

SafeAsHouses V1.01 Login

&3]

28

Understanding the app

* |f we authenticate with the correct password
we are granted access to the application

SafeAsHouses Password Safe V1.01 - Freeware, written by Asa Margetts

Your passwor ds are AES encrypted. | Username) !_ ﬂ
(Sea ,) J

* Incorrect password we get denied (iccsomm [)

Password incorrect

OK

29

ltems of interest

The application asks for input

Incorrect password presents a pop up stating
“Password incorrect”

The application exits after you click OK when
your password is incorrect

Successful authentication brings up another
window

ltems of interest

* The main idea is to take certain areas of
interest inside the application and find that
functionality

* Even if the application is obfuscated hopefully
identifying an item of interest will lead us to
the code we want to reverse

* |’ve highlighted four items of interest but you
could easily focus on other areas

Searching for items of interest

* Now that we’ve done some recon and
understand the type of functionality we want
to go after we need to search for that

* There are a number of ways to search for
items of interest but I'll highlight two

1. Decompile all code into one text file
2. Use the Reflector plugin “Code search”

+

+

Decompile code into text file

+J mscorlib
43 System.Drawing

=
3 System.WinW First select
N o program you're
3 mscorlib . .
@ b DrS going to decompile
43 System.Security

3 Accessibility

Ad Svustem.Confinuratinn

33

Decompile code into text file

 Next choose File > Save Code

File | View Debugger Help
7 Open Ctrl+0

Open from GAC

' _

3 Open List
% Reload F5
b+ Save Code... Ctrl+S

Exit

Decompile code into text file

* Then save the file as a “C# single file”

‘= o -
UU '! Desktop » v | 4y | l Search Desktop
Organize v New folder
- Favorites ‘ g Elimnes
Bl Desktop || System Folder
WS
& Downloads
J travis
. : : System Folder
9 Libraries = D = .

¢ Documents

: P L Computer
@' Music =S| System Folder
k=| Pictures
B videos LR | Network
L System Folder
'8 Computer
- screenshots

File name: SafeAsHouses

Save as typg |iC# single file

4 Hide Folders | Save l

Decompile code into text file

* At this point you can use your favorite text
editor to search through the decompiled code

* Disadvantage is that searching through a flat
file doesn’t present a lot of context

* On the other hand it’s always handy to have a
raw dump and the ability to save for historical
purposes

Reflector code search plugin

Reflector’s code search plugin is very convenient
in that you don’t have to leave the reflector tool

With the code search plugin you also don’t loose
the context with where code functionality is
located

Using code search we’ll search for all four items of
interest

http://reflectoraddins.codeplex.com/wikipage?title=
CodeSearch&referringTitle=Home

ltems of interest

The application asks for input

Incorrect password presents a pop up stating
“Password incorrect”

The application exits after you click OK when
your password is incorrect

Successful authentication brings up another
window

oAp

Application asks for input

opular way of taking form input in a .Net

application is through the text box class where

the

convention is “this.textBox1.Text”

e Here textBox1 is a variable name

e Most obfuscators will hide the variable name

Wit
* So

n something like “this.STX. Text”
oetter to search for “this.*.Text” inside the

COC

e search reflector plugin

Application asks for input

Code Search 5.0.0.28288
this.*. Text
Path Hit Count
. 0:Void 1
() : Void 5
B 0:Void 7
8.L0 : Void 4
A ():Void 32
fi. (Object, EventArgs) : Void 1
A.l(): Void 3

e Searching for this.*.Text revealed numerous hits,
probably best to keep searching for different
terms, you might also want to search for just
* Text

40

Pop up message

* A pop up box is typically done with the
“MessageBox.Show” method

* Two arguments can be given to this method,
window title and window message

1/

* MessageBox.Show(“title”, “message”)

* Use code search to see how many message
ooxes are in the application, the idea is to
nopefully pinpoint this functionality

Pop up message

Code Search 5.0.0.28288
MessageBox.Show
Path Hit Count
. L(Object, EventArgs) : Void
. 0:Voud
.L() : Void
|0 : Void
B0 : Void
~() : Void
Q.L0 : Void
B.10: Void

N O e e e e

* So quite a few hits on MessageBox.Show, let’s
continue searching for other constructs

Pop up message

* The pop up message states “Password
incorrect”

* We should search the code for strings like this

Path Hit Count

* No dice, the phrase “Password incorrect” must
be obfuscated

43

Application closes

* |f you enter an incorrect password you’ll get a
pop up, after clicking OK the application will
close

* .Net can handle this in a couple of ways, with
Application.Exit and Environment.Exit

e Let’s search for these terms as well

Application closes

Code Search 5.0.0.28288
Environment.Exit

Path Hit Count
.L{Object, EventArgs) : Void 1
. () :Void
L() : Void
|0 : Void
B0 : Void

S T ST

e Less results which means which means less
manual reviewing of code

Successful authentication opens
another window

* Probably the most popular way to show one
window then hide another is to use the
window.Show() and window.Hide() methods

* They are used in tandom

e Even though they are commonly used in
tandom it’s a good idea to search for both

terms

Successful authentication opens
another window

Code Search 5.0.0,28288
Hide()
Path Hit Count
. ():Void 1
0. (Object, EventArgs) : Void 1
Q. L(Object, EventArgs) : Void 1

* Only three hits, we’re money

47

Code search plugin

* Using this plugin we were able to narrow
down to only three locations where our
authentication functionality is most likely
hiding

* Click on each result to view the obfuscated
code

* Look for the other constructs,
Environment.Exit, this.*.Text, etc

e Code search is case sensitive

First hit, found the functionality

private void 4 ()
{
try
{
if (L. (this.| .Text) == | 1)
{
base.Opacity = 0.0;
this.Refresh();
for (doublei=1.0:1>=00:1-=0.1)
{
base.Opacity = i;
this.Refresh();
}
AA=newi();
base.Hide();
A .Show():
h
else
{
MessageBox.Show(l .4 (-1560487502), L ., (-1560487461));
Environment.EBxit(0);
b
h

catch
f

49

Same code in ILSpy

+3 System.Drawing
=+ SafeAsHouses —

=3l References

1 Resources

=2 {} -

=%
wd Base Types

: IContainer
: Button
: TextBox
: Label
: PictureBox
(object, Even
(object, KeyE
(stnng strinc
(object, Even
() : void

(object, Even'—
(:void
(object, Even
() : void
(object, Even

() : void
0 void

1% %6 %6 "6 6 6 "6 6 "6 "6 "6 "6 6 "o "0 "0 %%

2 Elprivate void EEA()

{

try
{
string a = g (this.[E[0. Text);
if (a == QF)
1
base.Opacity = 0.0;
this.Refresh();
for (double num = 1.8; num >= ©.8; num -= @8.1)
{
base.Opacity = num;
this.Refresh();
éﬂ B9 = new E3();
base.Hide();
E5). show();
}
else
{
MessageBox.Show([FE! .EEi(-1560487502), .B
Environment.Exit(0);
¥
}
catch
this. GRI();
}

50

Explanation of code

oa_”n

Line 6: developer is assigning variable “a” to
whatever you type into the text box

Line 7: if statement comparing password values

Line 17: if password is correct base.Hide will hide
the login box

Line 18: will show the main window

Line 22: message box that tells you your password
IS iIncorrect

Line 23: closes the application

Subverting authentication

* Now that we’ve found the code that performs the
authentication we want to subvert that
functionality to gain access without knowing the

password

* There are two tools that will allow us modify the
executables

* Graywolf
— http://digitalbodysuard.com/GrayWolf.html

e Reflexil
— http://reflexil.net/

private void q ()

{
try
{

Reflexil

if (L. (this.| Text) == | 4)

{

base.Opacity = 0.0;
this.Refresh();
for (doublei=1.0;1>=0.0;1-=0.1)

i

Sebastien LEBRETON's Reflexil v1.5

Method definition
Instructions | Variables | Parameters | Exception Handlers | Overrides | Attributes
Offset OpCode Operand

00 |0 Idarg.0
01 1 Idfld System.Windows.Forms.TextBox ::
02 |6 callvirt System.String System.Windows.Forms.(
03 11 call System.String L: (System.String)
04 |16 stloc.0

Reflexil

* The bottom half of the previous screen shot
shows the reflexil plugin to reflector

e With reflexil we can edit the executable

 We'll be editing content in the “Instructions”
tab within reflexil

* These instructions are referred to as CIL
(common intermediate language)

CIL

* Lower level language used by the .Net
application virtual machine

* So your higher level programming, such as C#,
gets converted to CIL (sometimes called IL)

* The CIL instructions will then be JIT compiled
into native machine code at run time

* Opcodes are at the heart of CIL and tell the
application what to do

CIL

* Not that important to understand all the
technical details behind CIL

* On lines 01, 02, and 03 we can see these three
lines are more than likely responsible for
getting input from user via a text box

01 |1 dfld System.Windows.Forms.TextBox |
02 |6 callvirt System.String System.Windows.Forms.!
03 (11 call System.String L: (System.String)

56

Modifying CIL

* Looking through the code and CIL we see an
interesting instruction on line 07

* The operand to the instruction is
“op_Equality” that compares passwords

* The next opcode instruction on line 08 is
“brfalse”

e Stands for branch if false, so it’s the if
statement

Modifying CIL

* You'll also notice the operand for the opcode
on line 08 is “->(36)”

* This means branch to line 36 if the password
doesn’t match

* This branches all the way down to the
message box functionality

* To break this functionality we can change the
brfalse opcode to the opposite which is brtrue

Modifying CIL

* Right click on opcode and choose edit

05
06
07
» 08
09

17 Idloc.0

18 |dsfld System.String |::

23 call System.Bg Create new...

28 brfalse -> (36) Id« Edit...

33 Idarg.0 Replace all with code...

59

Modifying CIL

* Next change to brtrue then click update

Edit existing instruction =
OpCode brtrue = [Update]
Description Transfers control to a target instruction if value is true, not null, or

non-zZero.

Operand type [-> Instruction reference ']

Operand |, (36) idc.i4 -1560487502 v

60

Modifying CIL

* Next right click on root tree and save

[# «J dystem.Worktiow.Activities (3.U.U.U) I JI iassembl;f: Assembl}TitlleJ("SJaf

=™] PasswordSafe (1.0.0 o Back Al) it pfn\iisible(false)]
= W% PasswordSafe.exe 3id("003c8e3d-9e
[References | @ Forward Alt+Right semg:yfl’_roguct('
g {} - isemblyTrademal
g% * Toggle Bookmark Ctrl+K ppresslidasm]
mpilationRelaxa
if) Base T LD Copy Ctrl+C ntimeCompatibi
av (:V = blyConfiguri
) sembly’ g
a9 (Obje &R Decompile semblyFileVersio
39 (Obje -
) 19
L.'O (Strin i Analyze Ctrl+R
_.jv L(): V¢ bl Export Assembly Source Code...
8% L(Objg Go To Entry Point

9 () 'V ' =
8 ll,'l | 2K Close Assembly Del ON's Reflexil v
_':'9 |(Obijg =

-'-": _UO: | = Reflexil v1.5 3 4% Inject class
aY¥ —(Obje=w - I
_.jV 00 : Void ' "3 Inject interfa
,.,9 Q(Object, EventArgs) : Void Main moc %> Inject struct
;,V fi) : ‘;")cid N Entry poin & Inject enum
2 ctor -3 Inject asseml
// Assembly PasswordSafe, Version 1.0.0.] 4 Inject resour
Location: C:\temp'\SafeAsHouses\SafeAsHouses\Sa =
Name: PasswordSafe, Version=1.0.0.1, Culture=n

Patched executable

* Now you’ve successfully patched a .Net
executable

* |f we run this we can provide the incorrect
password and successfully authenticate but if
we provide the correct password the
application will close

* We don’t have to stop there we can delete
chunks of code to remove that functionality as

well

Deleting code blocks

2 Hprivate void E8i()

30 1

- try

s {

6 strin =] -

7 if (a == Ig!!l!&éii)

8 { -

9 base.Opacity = 0.0; Delete this code

18 this.Refresh();

11 for (double num = 1.0; num >= 0.0; num -= 0.1)
12 {

13 base.Opacity = num;

14 this.Refresh();

15 é

16 g B8 = new E3();

17 base.Hide();

18 5. Show();

19 }

20 else

i { % N st SR PSR, .o ninmenns R A

Delete code blocks

* Delete lines 1-28
e Save the patched application

* Run it again and now it won’t matter what
password you type in because we’ve deleted
that entire if statement that checks for the
password

* Next open the patched application in reflector
to see if the code block was deleted

Missing code block

2l References private void 4 ()
=% ;"Y
& ¥) Base Types

9 O'Void Hl:newﬂO;
_50 d s s = base.Hide();
By (Object, EventArgs) : Void A .Show();
a¥ (Object, KeyEventArgs) : Void return;
_,59 (String, String) : Void MessageBox.Show(l .4 (-1560487502), L .4 (-1560487461));
_1° L) : Void Environment.Exit(0);
5 I:‘Ob_]'CL‘t'.E entArgs) : Void i E
2% |0: Void 9 {
QQ |(Object, EventArgs) : Void 3 this. L ();
g\) —() : Void H
AV —(Object, EventArgs) : Void b
a% g0 : Void

65

Great success

* We've successfully modified the application to
subvert authentication

e |f we had obtained this executable from
another user then we would have all their
passwords

* Hopefully you see how easy it is to control and
modify .Net applications to your heart’s
content

Easier reversing via deobfuscation

* There is a slightly easier way to go about
reversing an obfuscated .Net application

* If we can deobfuscate the obfuscated code
then we’ll have a much easier time
understanding the functionality of the
application

* Luckily reflexil can deobfuscate many
obfuscation tools

Reflexil deobfuscation

* Right click > Reflexil > Obfuscator search
Ry F===vvordsate (L00.) I 2 -3 PasswordSafe, Vers

= M Passwon () Back Alt+Left
* _2;} Refe Q Forward Alt+Right sembly PasswordSafe, Version1.0.0.1
g) c
BY | Toodle Bookatk Ctrl+K mbly: AssemblyDescription("")]
@ S R B mbly: AssemblyCompany("Asa Marge
i mbly: AssemblyCopyright("Asa Marge
2 1) Copy CutC gmbly: AssemblyTitle("SafeAsHouses P
=] mbly: ComVisible(false)]
4 (8] Decompile mbly: Guid("003c8e3d-9efd-4192-84d:
A B8 Analyze Ctrl+R mbly: AssemblyProduct("SafeAsHous
] - mbly: AssemblyTrademark("")]
3 bl Export Assembly Source Code... mbly: Suppresslidasm]
= Go To Entrv Point mbly: CompilationRelaxations(8)]
&4 sttt (i mbly: RuntimeCompatibility(WrapNo
4 X Close Assembly Del mbly: AssemblyConfiguration("")]
i‘ mhhe L aalas i fersion("1. 001" ")]
Bl © Reflexil v1.5 2 “1% Inject class
g¥ WU Void ' ~0 Inject interface

&% D(Object, EventArgs) : Void @ Inject struct

L.‘V A : Void g

& .ctor() | = Inject enum

5 Dispose(Boolean) : Void -3 Inject assembly reference
g¥ :IContainer 3 Inject resource

g% ':Button

¥ | : TextBox kA Save as...

"j: a: ;abd 8 B Obfuscator search...
a : Picturebox —

Reflexil deobfuscation

* Next reflexil will try to determine the type of
obfuscation used

Reflexil 53

Assembly SafeAsHouses.exe is obfuscated with Eazfuscator NET 2.2. Clean
the file ?

|~ Ok || Cancel]

* Here it successfully determined it was
obfuscated with Eazfuscator.NET 3.2

Reflexil deobfuscation

* Next you save the executable, you can stick
with the default *.Cleaned extension so you
don’t accidentally write over the original exe

File name:

Save as type: | Assembly files (*.exe, *.dll)

* Next open your saved SafeAsHouses.Cleaned
in reflector to view deobfuscated code

70

Deobfuscated code

4 GClass0 private void method_0()
= “%% LogonForm {

¥) Base Types try
‘v .ctor() { : oo :
_,59 button_login_Click(Object, Ever ;f (Class0.smethod_O(this.field_logonpassword.Text) == GClass0.string_0)
5 Dispose(Boolean) : Void base.Opacity = 0.0;
zﬁ field_logonpassword_KeyDown this.Refresh();
a9 field_logonpassword_TextChan for (doublei=1.0;1>=00;1-=01)
!j’) InitializeComponent() : Void { —)
=@ A venir= ase.Upacity = §;
_,?- LogonForm-Lca.dl,ObJect, Even this.Refresh(;
29 method_0() : Void }
&9 method_1() : Void MainForm form = new MainForm();
_'jQ method_2() : Void base.Hide();
ﬂé method_3() : Void form.Show();
&% method_4(String, String) : Void j

| A || else
&9 method_5(: Void 3 {
39 pictureBoxl_Click(Object, Event MessageBox.Show("Password incorrect”, "ACCESS DENIED");
_'jQ pictureBoxl_MouseHover(Obje Environment.Exit(0);
" Bed T IEHIERS B, SIERAR L LT T L }

71

Deobfuscated code

* So reflexil actually does a nice job on getting
us better source code

* [t may not retrieve original variables or class
names but it will at least name them varl,
var2, etc to give better meaning

* In this case it actually revealed the pop up
message of “Password incorrect” to whereas
before that was obfuscated

Steps to reverse .Net app

Run the application to understand
functionality

Decompile the application

Review source code and hone in on the
functionality you’re trying to understand

If obfuscated look for key constructs to
understand functionality

Optional: Modify app to achieve your
desired functionality

Wrapping up

* A standalone .Net executable will more than
likely be very easy to decompile to get original
source code

* Obfuscation techniques only make it a little bit
harder to figure out the original source code

* |f you want to save your intellectual property
then don’t write the software that utilizes the
.Net framework

http:

Questions

twitter.com/#!/curtismechlin

http://travisaltman.com

75

