Методы и средства лучевой диагностики

Асс. О. Иванова

Методы лучевой диагностики

• Рентгенологический метод

• Радионуклидный метод

Магнитно – резонансный метод

• Ультразвуковой метод

Рентгенологический метод

• это способ изучения строения и функции различных органов и систем, основанный на количественном и качественном анализе пучка рентгеновского излучения, прошедшего через тело человека.

Рентгенологические аппараты

- универсальные (общего назначения) позволяют выполнять рентгенологическое исследование всех частей тела
- специального назначения (специализированные) предназначены для выполнения исследований в неврологии, стоматологии, маммологии, проведении массовых исследований (флюорограф) и т.д.

Рентгенологические аппараты

Рентгенологические аппараты специального назначения

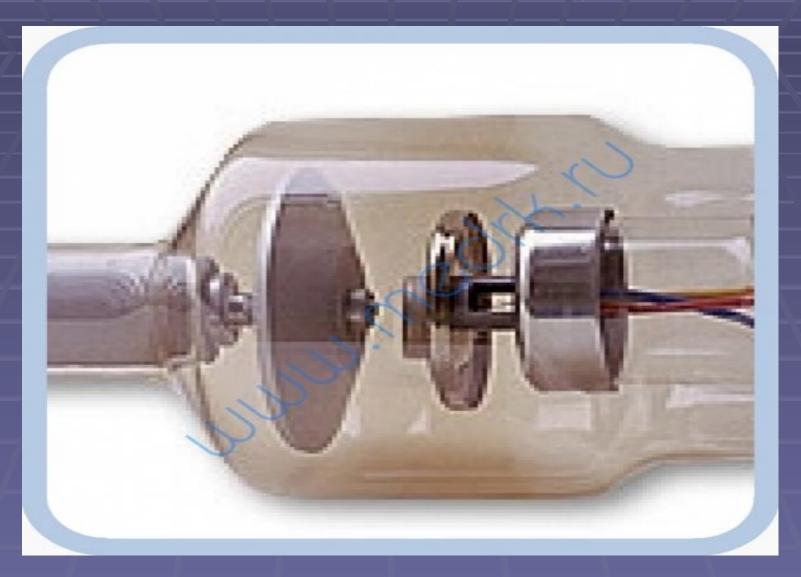
ЭОП

Рентгеновский аппарат передвижной

Рентгеновский аппарат передвижной

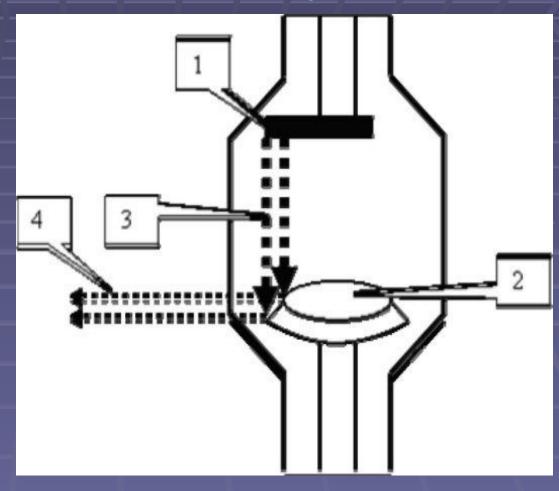
Рентгеновский аппарат (типовой)

- В состав аппарата входит:
- Питающее устройство
- Рентгеновская трубка (излучатель)
- Устройство для коллимации пучка
- Рентгеноэкспонометр
- Приемники излучения
 - Методы:
 - 1. Аналоговый
 - 2. Цифровой


Рентгеновская трубка

 ■ Вакуумный стеклянный сосуд с двумя впаянными электродами – катодом и анодом

Катод — тонкая вольфрамовая спираль, вокруг которой при ее нагревании образуется облако свободных электронов (термоэлектронная эмиссия)


Анод — электрод, на котором фокусируются электроны, которые разгоняются под действием высокого напряжения, и который вращается с огромной скоростью

Рентгеновская трубка

Схема строения рентгеновской трубки

- 1 катод
- 2 анод
- 3 поток электронов
- 4 рентгенизлучение

Рентгенография

способ рентгенологического исследования, при котором фиксированное рентгеновское изображение объекта получают на твердом носителе, в подавляющем большинстве случаев на рентгеновской пленке

Рентгеновская пленка

Многослойная

- 1 слой защитный
- 2 слой эмульсионный (соединение серебра + желатин)
- 3 слой склеивающий
- 4 слой слой основы (полиэтилен)
- 5 слой противоореольный (повышает четкость изображения)

Может быть:

- 1. Односторонняя для маммографии
- 2. Двусторонняя эмульсионный слой с 2 х сторон, что позволяет снизить рентген-нагрузку

Усиливающие экраны

Содержат люминофор, который под действием рентгеновского излучения светится и. воздействуя на пленку, усиливает его фотохимическое действие, что позволяет уменьшить экспозицию, а значит радиационное облучение пациента.

По назначению:

- 1.Стандартные
- 2. Мелкозернистые (остеология)
- 3.Скоростные (исследование движущихся объектов сердце)

Рентгенограммы

- 1. Обзорные снимок части тела (голова, таз) или целого органа (легкие, желудок)
- 2. Прицельные снимки с изображением части органа в проекции, оптимальной для исследования
 - 3. С прямым увеличением (травматология и ортопедия)

Могут быть:

- 1. Одиночные
- 2. Серийные несколько рентгенограмм в течении одного исследования

Рентгенограмма грудной клетки в прямой проекции

Основное правило рентгеновского исследования

Рентгенограммы любой части тела (органа) должны быть выполнены как минимум в двух взаимно перпендикулярных проекциях – прямой и боковой

Искусственное контрастирование органов

1-й способ контрастирования — прямое механическое введение контрастного вещества в полость органа (пищевод, желудок, матка, кишечник, кровеносные сосуды и т.д.)

2-й способ контрастирования — введение контрастного вещества в кровеносное русло — исследование мочевыделительной системы, желчных путей, сосудов

Контрастные вещества

Вещества, поглощающие рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создающие достаточный контраст с исследуемыми органами.

Выделяют:

1. Рентгенпозитивные контрастные вещества (на основе бария, йода)

2.Рентгеннегативные контрастные вещества (газы)

Контрастные вещества

- 1. Препараты сульфата бария водная взвесь сульфата бария (исследование пищеварительного тракта)
- Йодсодержащие растворы органических соединений

 урографин, тразограф, триомбраст и т.д.
 Выполняется контрастирование кровеносных сосудов, полостей сердца. Могут использоваться для исследования мочеполовой системы
- 3. Иодированные масла липоидол. Используются при исследовании бронхов, полости матки, свищей.
 - 4. Газы закись азота (полости тела, клетчаточные пространства), углекислый газ (кровь), воздух (пищеварительный тракт)

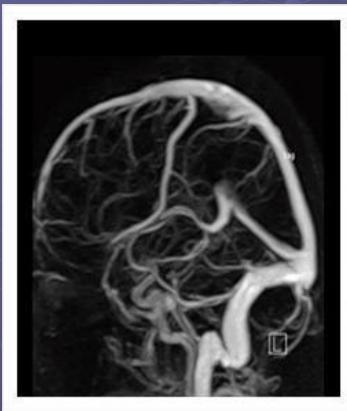
Неионные контрастные вещества

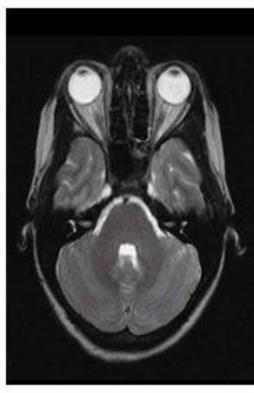
1. Мономеры – омнипак, ультравист и др.

2. Димеры – йодиксанол, йотролан

Рис. 25. Пептическая язва в наддиафрагмальном сегменте пищевода. На уровне язвы пищевод сужен.

Результаты гистеросальпингографии в норме:


виден треугольник - матка и «ниточки» - маточные трубы. На концах ниточек следы вылившегося контрастного вещества



Результаты гистеросальпингографии при непроходимости маточных труб:

виден только треугольник - матка, не видны маточные трубы

Исследование головного мозга

Цифровые (дигитальные) способы получения рентгеновского изображения

- Электронно оптическая цифровая рентгенография
- Сканирующая цифровая рентгенография
- Цифровая люминесцентная рентгенография
- Цифровая селеновая или силиконовая рентгенография (прямая цифровая рентгенография)

Электронно – оптическая цифровая рентгенография

сканирующая цифровая рентгенография

 Применяется техника сканирования объекта, т.е. последовательное «просвечивание» всех отделов объекта («зоны интереса») движущимся узким пучком рентгеновских лучей

Цифровая люминисцентная рентгенография

 Запоминающим устройством является люминесцентная пластина, способная сохранять скрытое изображение в течении нескольких минут

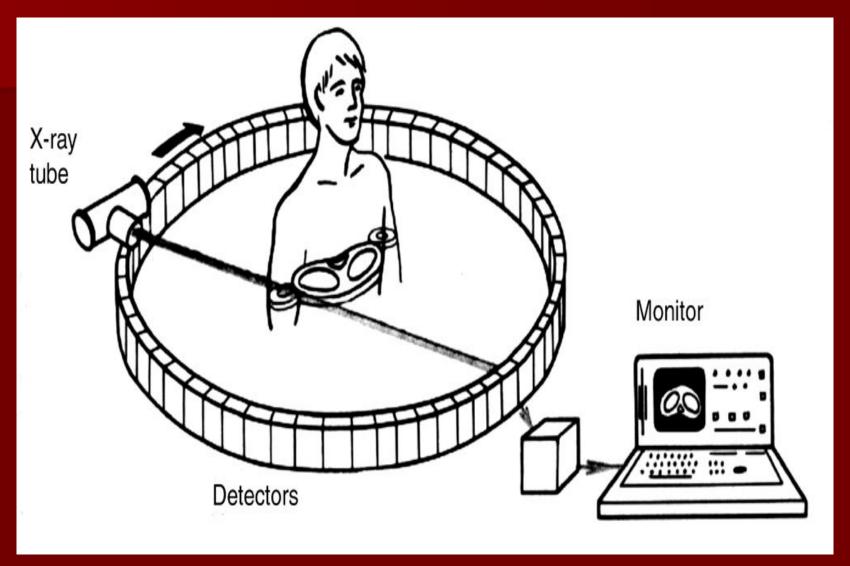
 Пластина сканируется специальным лазерным устройством, возникающий световой поток преобразуется в цифровой сигнал

Цифровая селеновая или силиконовая рентгенография (прямая цифровая рентгенография)

Основана на прямом преобразовании энергии рентгеновских фотонов в свободные электроны при действии рентгеновского пучка на пластины из аморфного селена или полукристаллического силикона

Преимущество цифровой рентгенографии

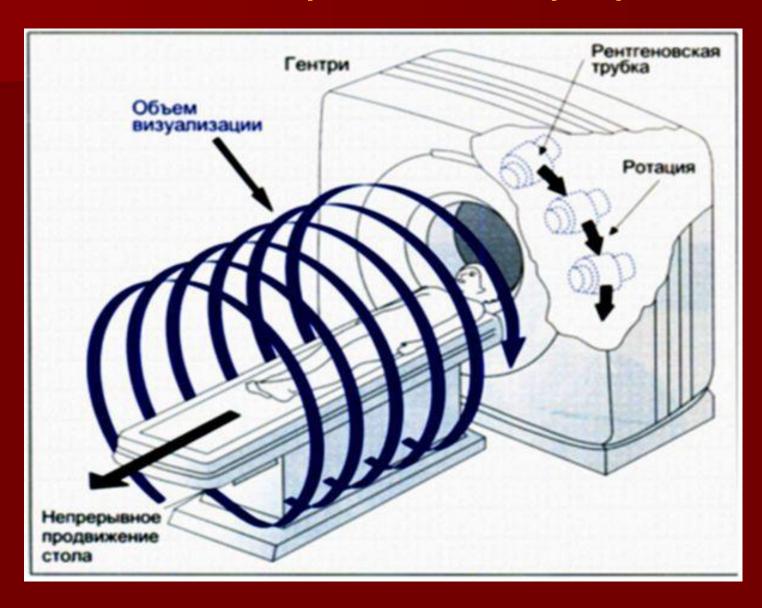
- Высокое качество изображения
- Пониженная лучевая нагрузка
- Возможность сохранять изображения на различных носителях
- Удобство хранения
- Возможность создания архивов с оперативным доступом к данным, передачей изображения на расстоянии


Компьютерная томография

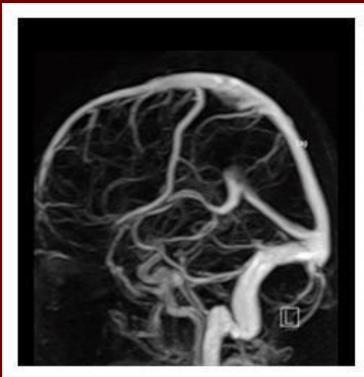
Послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения

Компьютерная томография

- •1963г. физиком А. Кормаком (ЮАР) опубликована статья о возможности компьютерной реконструкции рентгеновского изображения мозга
- 1972г. Выполнена первая томограмма пациентке с опухолью мозга
- •1979г. А. Кормаку и Г. Хаунсфилду присуждена Нобелевская премия


Компьютерная томография

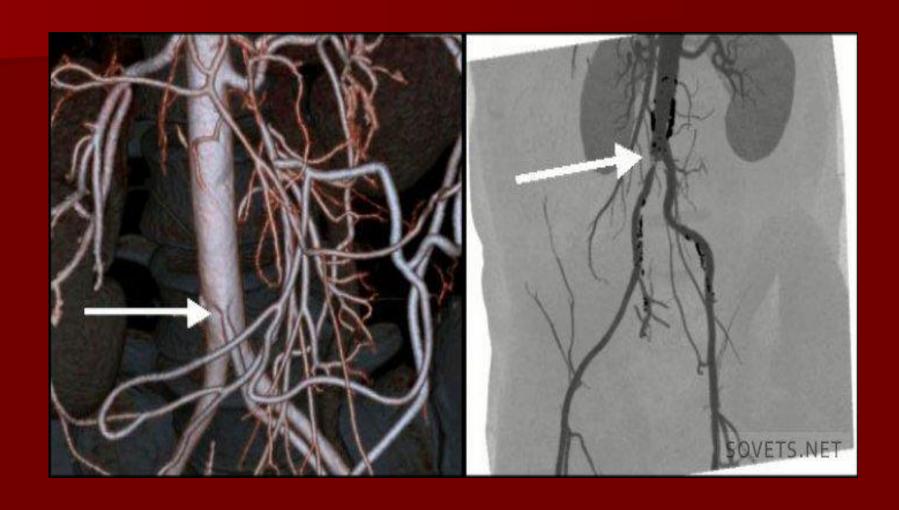
Компьютерный томограф


Компьютерная томография

КТ - ангиография

Компьютерная ангиография

Компьютерная ангиография


Рентгенологическое исследование кровеносных сосудов, производимое с применением контрастных веществ

Артериография

Флебография

Лимфография

Компьютерная ангиография

Радионуклидный метод исследования

- Способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченых ими индикаторов (радиофармацевтических препаратов – РФП)
- Радионуклидная визуализация это создание картины пространственного распределения НАС в органах и тканях при введении его в организм пациента

Радиофармацевтические препараты

 Это разрешенное для введение человеку с диагностической целью химическое соединение, в молекуле которого содержится радионуклид.

Выделяют (по периоду полураспада):

- 1. Долгоживущие несколько десятков дней
- Среднеживущие несколько дней
- 3. Короткоживущие несколько часов
- 4. Ультракороткоживущие несколько минут

Приборы для радионуклидных диагностических исследований

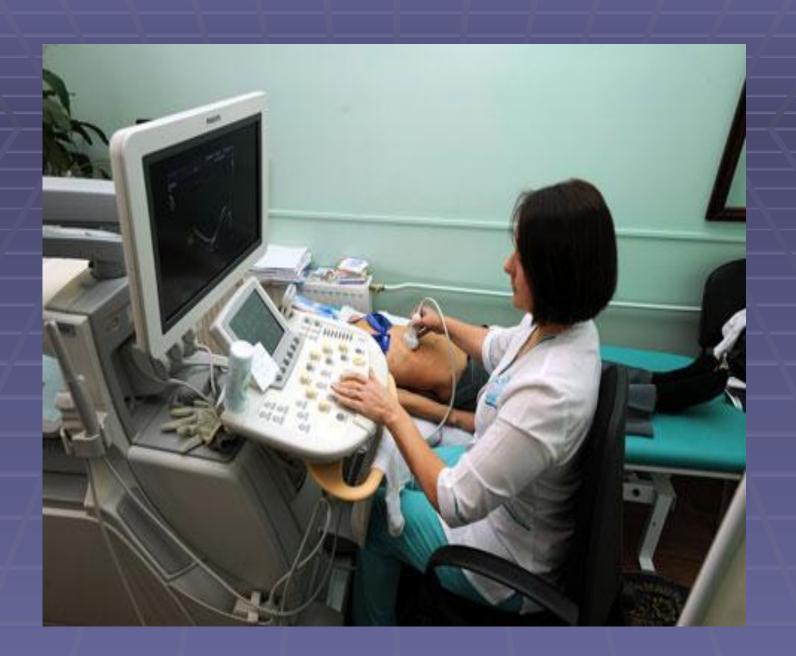
Все приборы устроены по единому принципу: имеют детектор, преобразующий ионизирующее излучение в электрические импульсы, блок электронной обработки и блок представления информации

Детектор — чаще всего это сцинтиллятор, т.е. вещество, в котором под действием эаряженных частиц или фотонов возникают световые вспышки (сцинтилляции), которые улавливаются фотоэлектронными умножителями и превращаются в электрические сигналы.

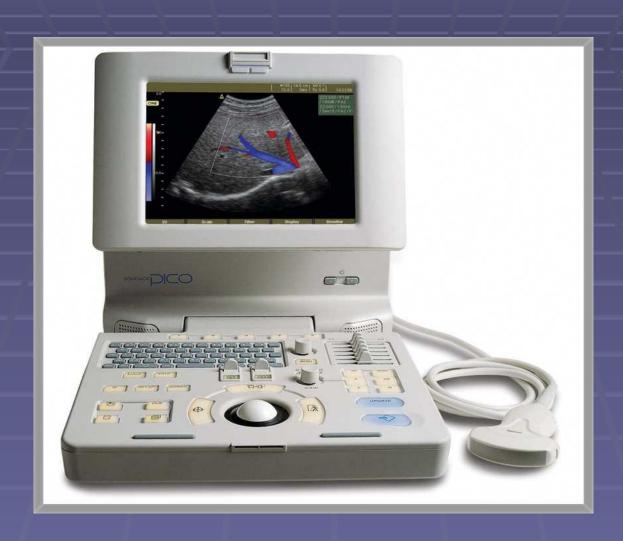
Сцинтиграфия

получение анатомо — функционального изображения органов и тканей пациента посредством регистрации на гамма — камере излучения, испускаемого инкорпорированным радионуклидом

- 1.Статическая (один снимок)
 - 2.Динамическая (серийная)


виды послойной радионуклидной визуализации

ОФЭТ — однофотонная эмиссионная томография


ПЭТ – позитронная эмиссионная томография (изучение метаболизма, применение ультракороткоживущих радионуклидов)

Ультразвуковой метод исследования

- Ультразвук упругое колебание среды с частотой, превышающей частоту колебания слышимых человеком звуков (свыше 20 кГц)
- Неионизирующее излучение
- УЗ метод способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения

УЗИ аппарат

Ультразвуковой преобразователь

- Это основная часть ультразвукового датчика
- Пьезокерамический кристалл основная часть ультразвукового преобразователя датчика (трансдюсера)
- Обратный пьезоэлектрический эффект возбуждение ультразвуковых колебаний в пьезокерамическом кристалле под воздействием коротких электрических импульсов
- Прямой пьезоэлектрический эффект способность пьезоэлемента принять отраженные эхо-волны и преобразовать их в электрические сигналы

Ультразвуковой преобразователь

- преобразует электрические сигналы в ультразвуковые колебания
- принимает отраженные эхо сигналы и преобразует их в электрические
- формирует пучок ультразвуковых колебаний необходимой формы
- обеспечивает (в ряде систем)
 перемещение пучка ультразвуковых волн в исследуемой области

Ультразвуковой датчик (трансдюсер)

Выделяют датчики для:

- 1.Медленного сканирования одноэлементные (как правило)
- 2.Быстрого сканирования содержат несколько элементов, различают механические (секторные) или электронные (выполнены в виде линеек),

Ультразвуковой датчик (трансдюсер)

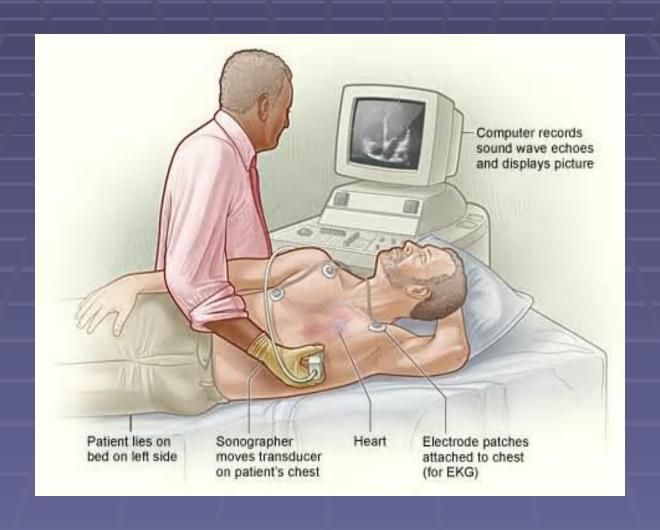
по форме получаемого изображения различают датчики:

- •Секторные
- Линейные
- •Конвексные

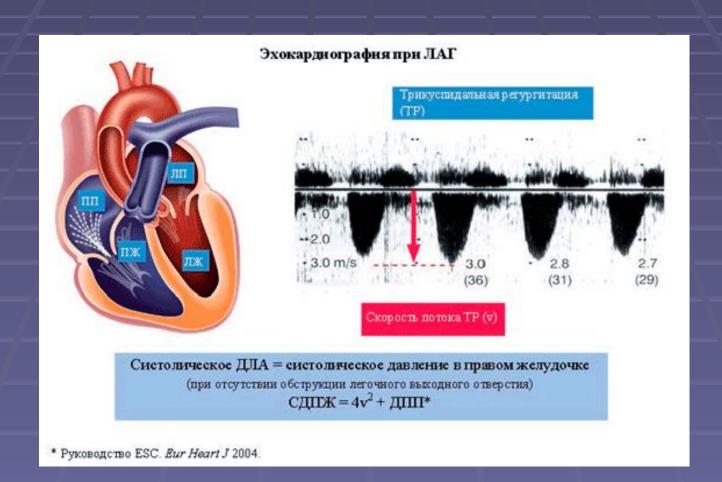
по принципу действия

- •эхоимпульсные
 - •доплеровские

Методы ультразвуковой диагностики


- •Эхография одномерное исследование (изображение в форме кривой эхограммы)
- •Сонография, сканирование— двухмерное исследование (изображение в форме картинки сонограммы)
- •Допплерография получение кинематической характеристики быстропротекающих процессов (кровоток, работа сердца)

Одномерное ультразвуковое исследование

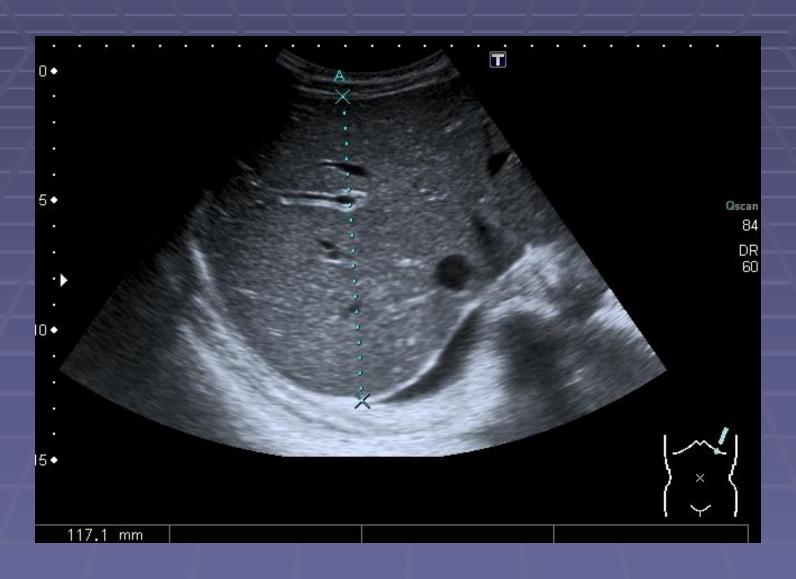

- А метод (офтальмология, неврология):
 - эхоэнцефалоскопия
 - УЗИ глазного яблока
- М метод
- - эхокардиография

Используется на первичном этапе обследования

эхокардиография



Одномерное ультразвуковое исследование



Двухмерное ультразвуковое исследование

- 1. Двухмерное изображение (в форме картинки)
- 2. Выполняется в режиме реального времени
- 3. Наличие промежуточной цифровой памяти (стоп кадр)
- 4. Изображение может быть зафиксировано на бумажном носителе

УЗИ брюшной полости

Допплерография

Эффект Допплера – изменение длины волны (или частоты) при движении источника волн по отношению к принимающему их устройству

Виды допплерографии:

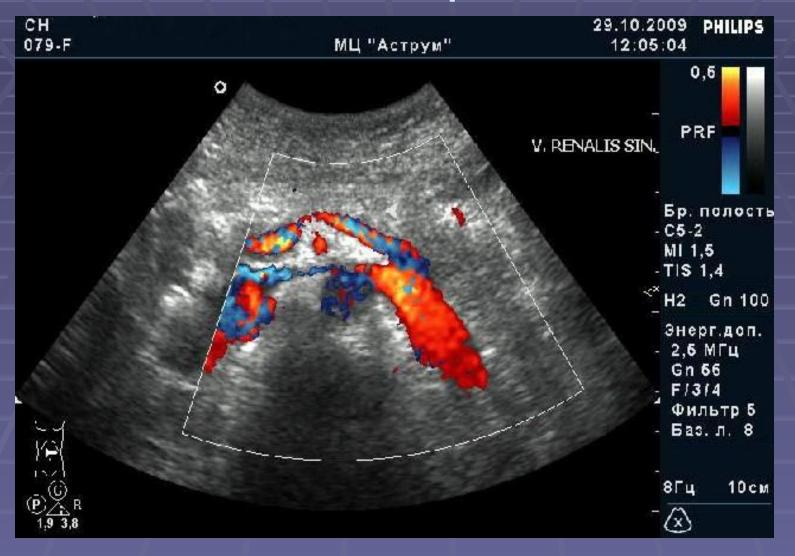
1. Непрерывный (постоянноволновой)

2. импульсный

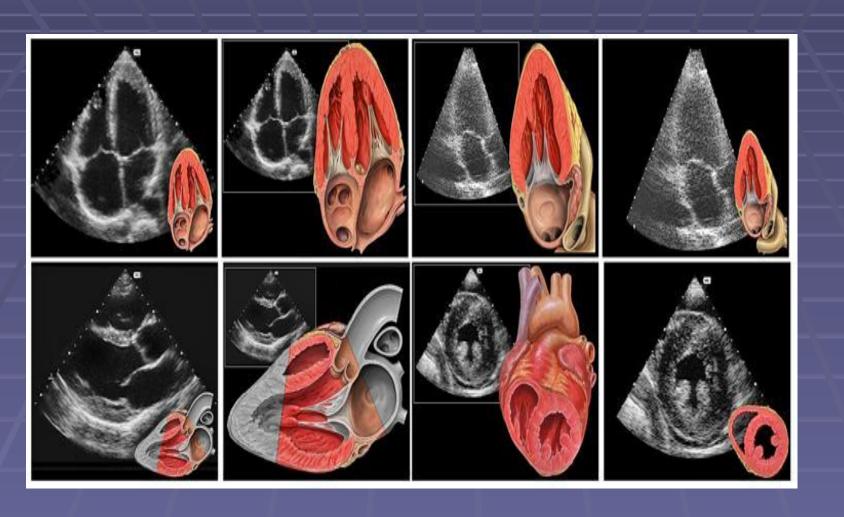
Ультразвуковая ангиография

УЗ ангиография – цветное доплеровское картирование, т.е. кодирование в цвете среднего значения доплеровского сдвига излучаемой частоты.

Кровь, движущаяся к датчику – красного цвета, от датчика – синего цвета


Энергетический допплер - кодируется в цвете интеграл амплитуд всех эхосигналов доплеровского спектра, позволяет сканировать сосуд на большем протяжении и даже маленького диаметра

Дуплексная и триплексная сонография


Дуплексная сонография – позволяет получить и анатомическую и физиологическую (в виде кривой) информацию о сосуде

Триплексная сонография - позволяет получить и анатомическую и физиологическую (в виде кривой) информацию о сосуде с цветным доплеровским картированием

УЗИ аорты

УЗИ сердца

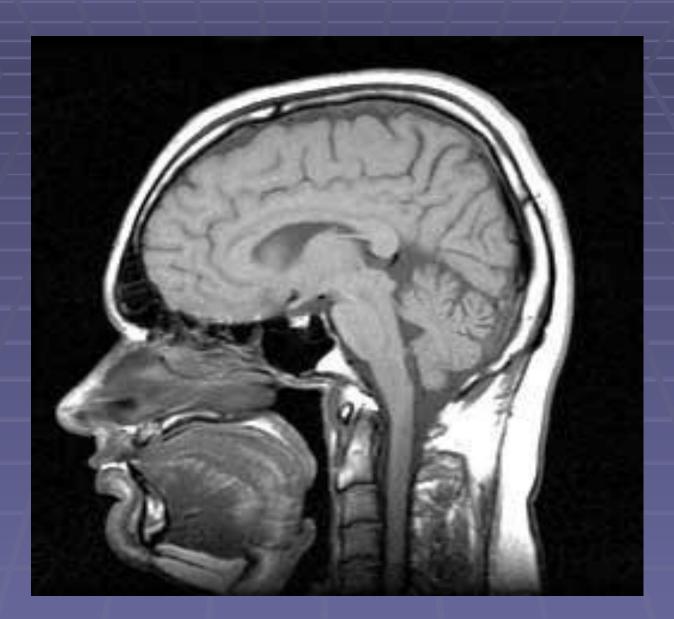
Магнитно – резонансная томография

- Ядерно магнитный резонанс способность ядер некоторых атомов, находясь в магнитном поле, под действием внешнего электромагнитного поля поглощать энергию, а затем испускать ее в виде радиосигнала.
- MPТ основана на явлении ядерно магнитного резонанса

Магнитно – резонансный томограф

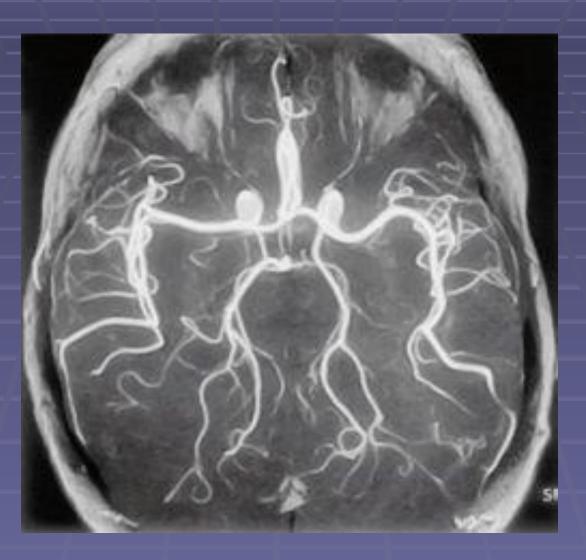
Магнитно – резонансная томография

- Современные MP томографы «настроены» на ядра водорода
- Параметры магнитно резонансной характеристики объекта:
- плотность протонов
- время Т1 (Т1 спин решетчатая (продольная) релаксация)
- время Т2 (Т2 спин спиновая (поперечная) релаксация)


МРТ позвоночника


Магнитно – резонансная томография

- MP ангиография
- MP спектроскопия
- MP перфузия
- Диффузионно взвешенная МРТ
- Функциональная МРТ


Магнитно – резонансная томография

Диффузионная МРТ

МР - ангиография

Абсолютные противопоказания к магнитно – резонансной томографии

- установленный кардиостимулятор (изменения магнитного поля могут имитировать сердечный ритм).
- <u>ферромагнитные</u> ферромагнитные или электронные имплантаты <u>среднего уха</u>.
- большие металлические имплантаты, ферромагнитные осколки.
- <u>ферромагнитные</u>ферромагнитные <u>аппараты Илизарова</u>

Интервенционная радиология

- Это сочетание в одной процедуре диагностических (лучевых) и лечебных мероприятий
- Рентгенэндоваскулярные вмешательства (эндоваскулярная дилатация сосуда, окклюзия сосуда, протезирование сосуда и т. д.)
- Рентгенэндоуринальные вмешательства
- Эндобиллиарные вмешательства
- Биопсии

рентгеноперационная

