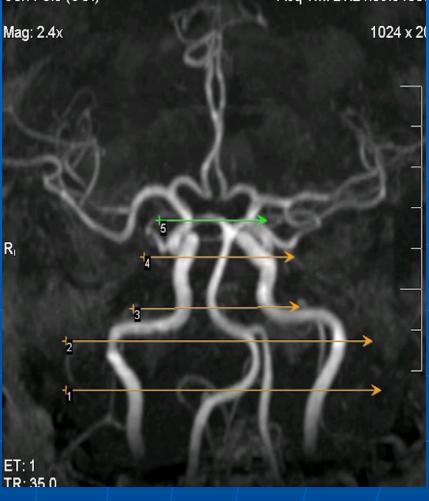

Сеть диагностических центров «МРТ ЭКСПЕРТ»


Метод МР-ангиографии в неврологической и хирургической практике.

Докладчик:

Нормальное MP-ангиографическое изображение сосудов головного мозга.

- 1. Внутренняя сонная артерия.
 - І.Экстракраниальный отдел.
- II. Интракраниальный отдел:
 - 1. препетрозальный (от уровня входа в череп до пирамиды височной кости);
 - 2. петрозальный (внутри пирамиды височной кости);
 - 3. инфраклиноидный (субклиноидный)
 - восходящая часть;
 - 4. интраклиноидный (сифон ВСА);
 - 5. супраклиноидный (от выхода из клиновидной кости до уровня бифуркации на СМА и ПМА);


- 1-2-препетрозальный;
- 2-3-пертрозальный;
- 3-4-инфраклиноидный;
- 4-5 интраклиноидный (сифон ВСА);
- Выше 5- супраклиноидный.

2. Передняя мозговая артерия.

- A1- от места отхождения передней мозговой артерии от ВСА до передней соединительной артерии (ПСоА) прекоммуникантный сегмент горизонтальная часть.
- A2 заканчивается на уровне деления на перикаллезную и калезомаргинальную ветви (вертикальный сегмент)
- АЗ концевые отделы ПМА (горизонтальный сегмент).


3. Средняя мозговая артерия

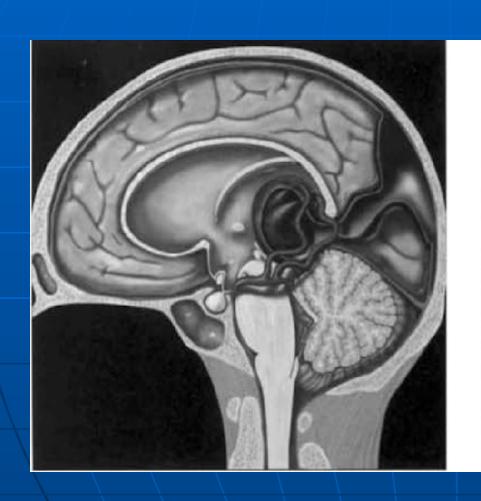
- M1 от места деления ВСА до места би- и трифуркации СМА – субинсулярный сегмент.
- M2 в области островка, огибает его, выходит из Сильвиевой щели с переходом в оперкулярный (M3) сегмент.
- M3 периферический отдел СМА (супраинсулярный)

4. Задняя мозговая артерия

- Р1 от места деления ОА до задних соединительных артерий (прекоммуникантный сегмент).
- Р2 вокруг среднего мозга в обходной (охватывающей) цистерне.
- РЗ периферические отделы ЗМА, в четверохолмной цистерне.

МРА-диагностика сосудистых мальформаций головного мозга-

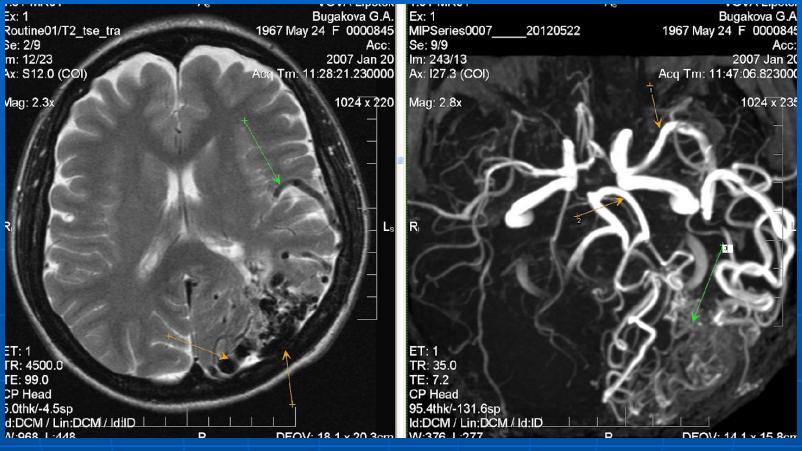
гетерогенная группа дизэмбриогенетических образований ангиоматозного строения, персистирующие эмбриональные сосуды, различные шунты и фистулы.


Наиболее часто встречающиеся варианты сосудистых мальформаций.

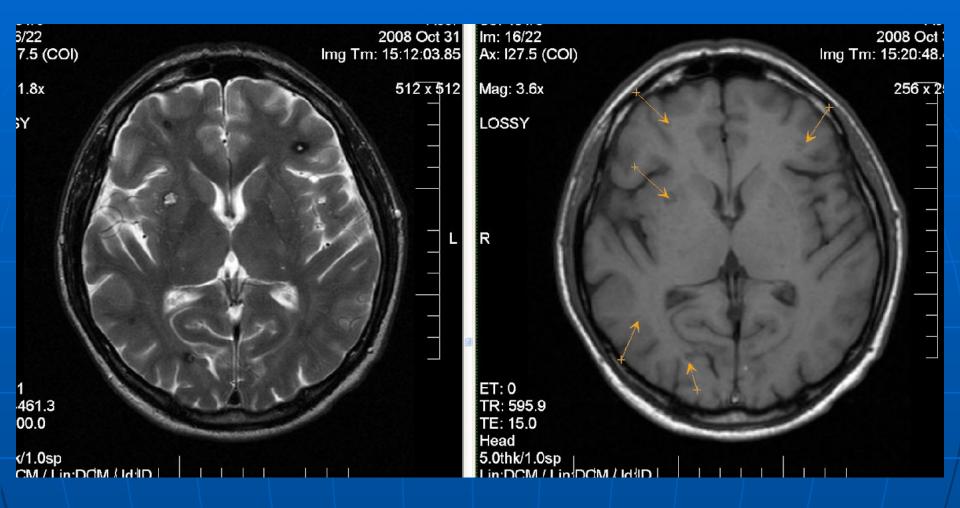
- Мальформация большой вены мозга.
- Дуральные артерио-венозные мальформации.
- Кавернозные ангиомы.
- Капиллярные телеангиоэктазии (небольшое по размерам образование, характеризующееся гипоинтенсивным по Т2 МР-сигналом).
- Венозные мальформации (участки неправильной иногда лучистой формы с низким МР-сигналом по Т1 и Т2).
- Варикозное расширение вен мозга.

Мальформация большой вены мозга (вены Галена)

- Встречается очень редко около 1% всей врожденной сердечно- сосудистой патологии. Муж. поражаются чаще.
- МРА-данные: выраженное варикозное расширение вены Галена, явления внутренней гидроцефалии. В редких случаях внутрипаренхиматозное или внутрижелудочковое кровоизлияния.

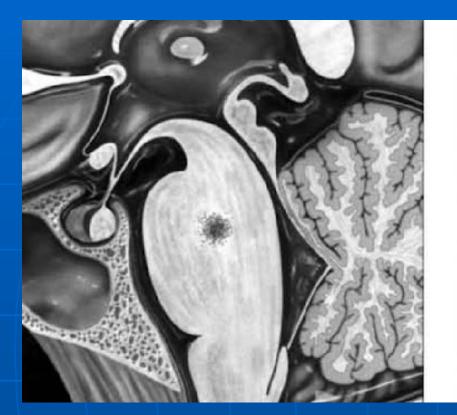

Расширенная вена Галена, дренирующаяся в сагиттальный синус.

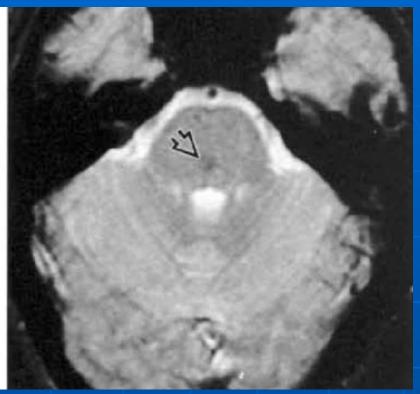
2. Артерио-венозные мальформации (АВМ)-


Наиболее часто встречающаяся симптоматическая сосудистая мальформация. Типичные АВМ представлены 3 основными компонентами: приводящими артериями (афферентные сосуды), клубком (узлом) измененных сосудистых структур и дренирующими венами (эфферентными сосудами). Узел АВМ состоит из слияния артерий и вен без промежуточной капиллярной сети. Прилежащая ткань головного мозга, как правило, атрофична, с глиозными изменениями за счет феномена «обкрадывания».

Данные МРТ: гипоинтенсивные сосудистые структуры в Т1- и Т2-ВИ за счет феномена пустоты потока. Глиозные изменения прилежащих участков паренхимы мозга в виде повышения интенсивности МР-сигнала в Т2 и Тігт. При МР-ангиографии уточняются особенности артериального кровоснабжения и венозного дренирования узла АВМ.

3. Кавернозные ангиомы-

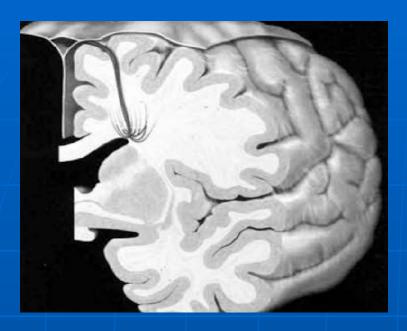

(кавернома, кавернозная мальформация) - скопление расширенных синусоидных пространств, выстланных эндотелием, с отсутствием участков сохранения нормальной паренхимы мозга в их структуре. Возможна и наследственная и спорадическая встречаемость. Единичные и множественные образования.



Множественные каверномы головного мозга. МРА в ТОГ режиме патологических изменений, как правило, не выявляет.

4. Капиллярная телеангиэктазия.

- Составляет до 20% всех инфратенториальных сосудистых мальформаций (и до 7% супратенториальных). Представляет собой чередование участков нормальной паренхимы мозга и участков с расширенными капиллярами. Наиболее частая локализация мост и мозжечок.
- МР-картина: гиперинтенсивный (может быть и гипоинтенсивным) неоднородный МР-сигнал в Т2-ВИ, «щетковидное» усиление на постконтрастных Т1-ВИ; отсутствие изменений при МР-ангиографии.



Капиллярная телеангиэктазия. Определяется «щетковидный» контур мелкового очагового образования в дорзальных отделах моста мозга

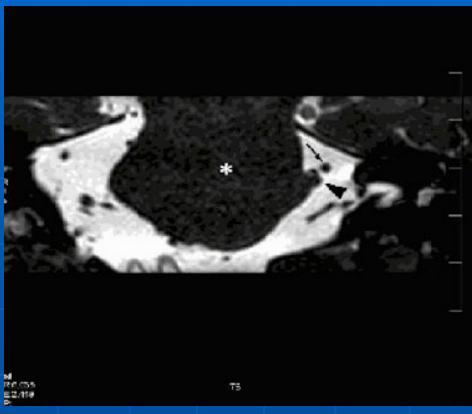
5. Венозная мальформация (венозная ангиома)

- Встречается почти у 4% населения и не является истинной мальформацией, больше вариант строения венозного оттока. В 15-20% случаев ассоциирована с кавернозной ангиомой.
- Данные MPT: определяются мелкие дренирующие вены в виде «зонтика», дренирующиеся в крупную транскортикальную вену. При в/в контрастировании определяется усиление мелких венул в виде «зонтика», звездчатой формы очаги.
- При МР-ангиографии с внутривенным контрастированием можно выявить расширенную вену с дренирующимися в нее мелкими венулами в виде «зонтика».

Расширенные вены глубокого белого вещества, дренирующиеся в расширенную транскортикальную вену. Венозная мальформация

6. Каротидно-кавернозное соустье.

Имеет спонтанный или посттравматический характер. Это соустье между инфраклиноидным (кавернозным сегментом) внутренней сонной артреии и кавернозным синусом. Патогенез связан с интенсивным сбросом крови из ВСА в кавернозный синус, увеличения давления в последнем, расширения глазной вены на стороне поражения разной степени выраженности; формирования пульсирующего экзофтальма



Стрелка показывает уровень соустья между левой внутренней сонной артерией и левым каверзнозным синусом с их расширением и наличием высокоскоростного/высокоинтенсивного кровотока. Открытая стрелка указывает расширенную и извитую левую глазничную вену, также с интенсивным кровотоком в ней. Каротидно-кавернозное соустье слева.

7. Нейроваскулярный конфликт.

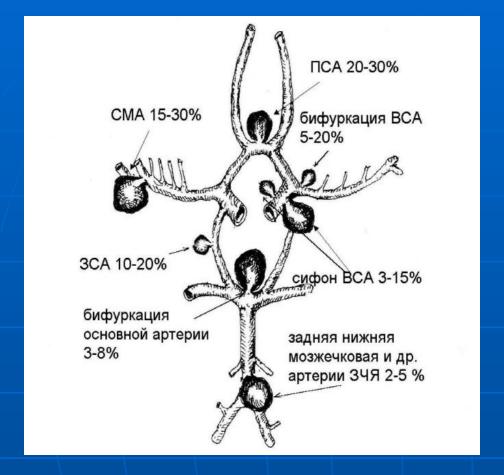
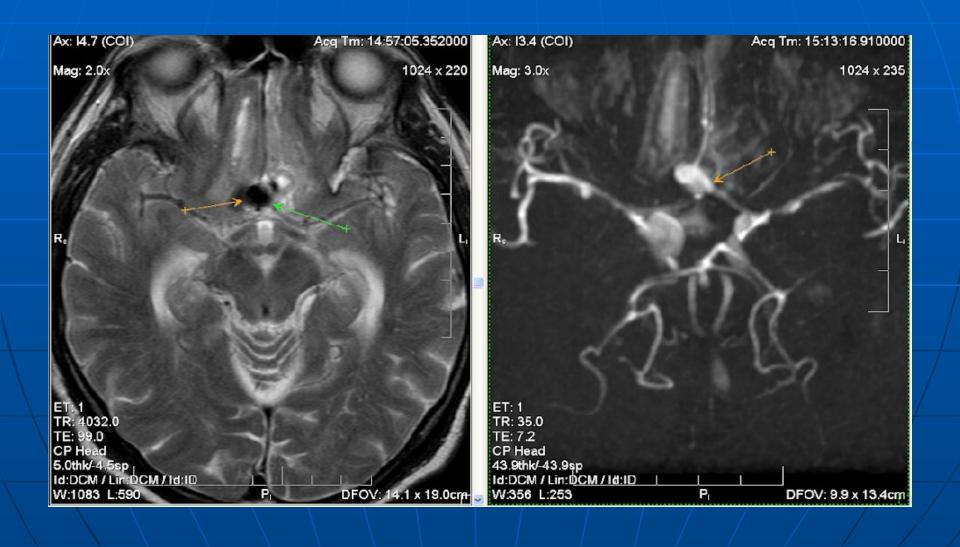
- Это сдавление сосудистой петлей нерва (чаще тройничного и лицевого) в мостомозжечковом углу.
- Выполняется МРТ в режиме высокого разрешения (см. изображения ниже) с получением тонких срезов. Невралгия тройничного нерва наиболее часто вызвана сдавлением ствола нерва сосудистой петлей (чаще верхней, задней нижней мозжечковыми артерями). Компрессия лицевого нерва, как правило, осуществляется переднеенижней мозжечковой артерией.

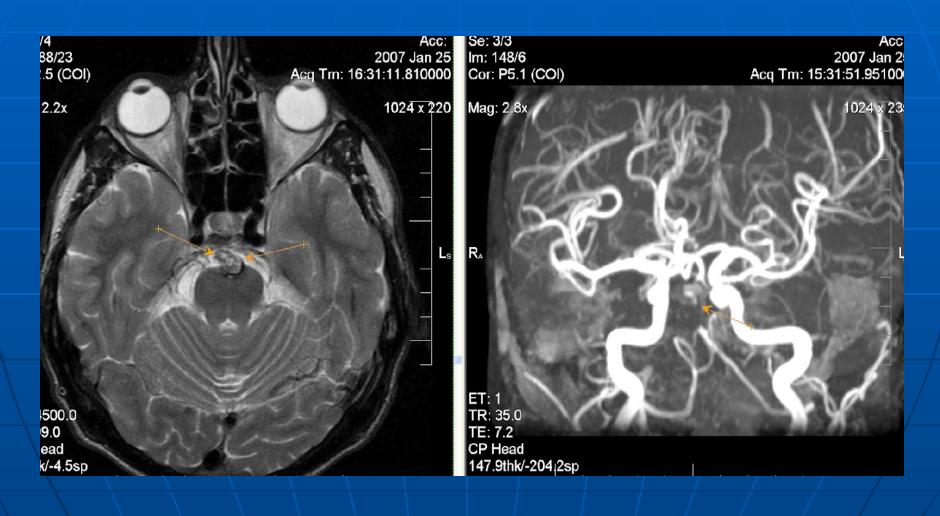
Нейроваскулярный конфликт.

* показывает ствол мозга, короткие стрелки – верхняя мозжечковая артерия. Головка стрелки – ствол тройничного нерва. Длинная стрелка показывает цистерну Меккеля.

Аневризмы сосудов головного мозга-

артериальная аневризма представляет собой ограниченное выпячивание стенки артерии в виде дивертикула или мешка (мешотчатая аневризма) или равномерное расширение артерии на определенном участке (фузиформная аневризма). Являются основной причиной нетравматический интракраниальных кровоизлияний. По данным аутопсий распространенность аневризм составляет 2-5% от всей популяции; соответственно разрыв и геморрагия происходит приблизительно в 1 аневризме из 500.


Схема расположения и частота встречаемости мешотчатых аневризм большого артериального круга основания мозга.

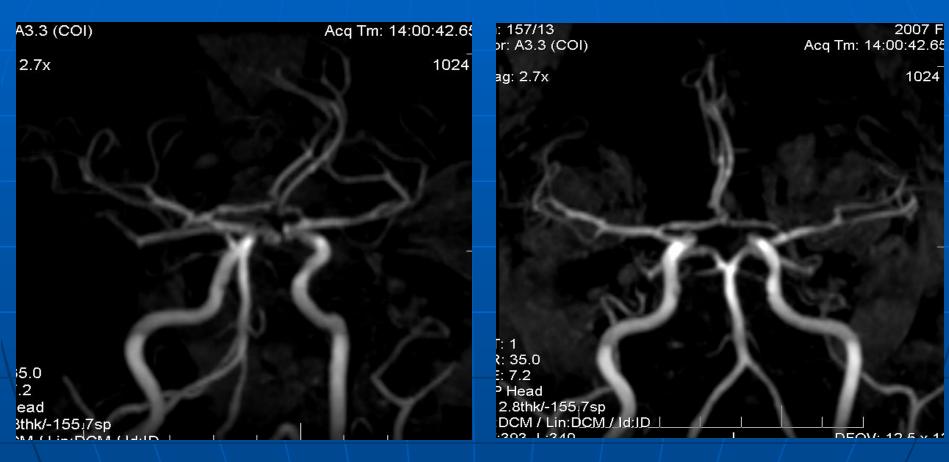
Данные МРТ: обычно округлой или овальной формы структура с высокоинтенсивным сохранным кровотоком, прилежащая к стенке сосуда (гипоинтенсиваная во всех режимах сканирования за счет феномена пустоты потока); небольшая неоднородность на фоне турбулентности кровотока. При тромбировании сигнальные характеристики изменяются и МР-сигнал от тромба определяется давностью его образования.

Тромбированная аневризма передней соединительной артерии

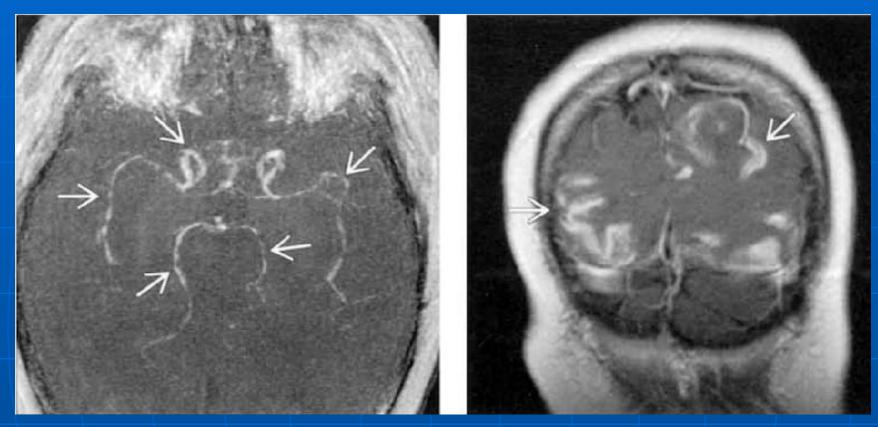
Тромбированная аневризма основной артерии

Фузиформная аневризма

- расширенный, извитой и удлиненный сосуд. Долихоэктазия. Отсутствие шейки аневризмы. Наиболее характерные локализации: вертебробазиллярный отдел; Р1 сегмент задней мозговой артерии и супраклиноидный сегмент ВСА.
- Данные МРТ: в Т1, Т2-ВИ
 определяется расширенный на
 протяжении сосуд. При МРА
 определяется локализация,
 протяженность расширенного
 сегмента, интенсивность кровотока
 в нем (характерен турбулентный).


Фузиформное расширение A1 сегмента правой передней мозговой артерии.

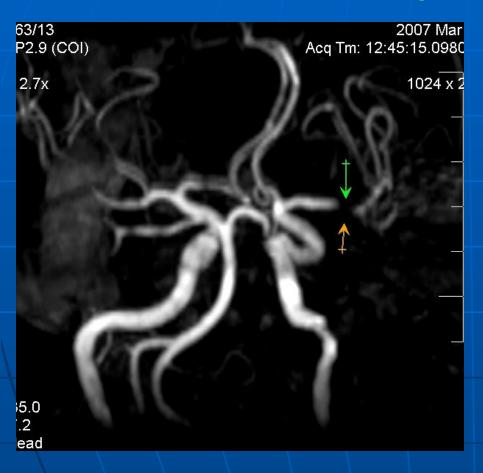
Атеросклероз интракраниальных артерий.


- Мультифакториальный системный патологический процесс. Происходят дегенеративные изменения в сосудистой стенке. Предрасполагающие факторы: гиперхолестеринемия и гиперлипидемия. Образование кальцинирующих бляшек, изъязвление интимы и смещение тромба, вследствие чего прогрессирующе уменьшается диаметр сосуда.
- Данные MPT: в нативном Т2-ВИ и в режиме T2-Flair определяются очаги хроничесокой ишемии, постишемические лакунарные кисты как последствия лакунарных инфарктов ГМ и микроинсультов. При MPA определяются локальные сужения просвета сосудов (стенозирование), постстенотичесое расширение, пристеночные дефекты наполнения и уменьшения кровотока в терминальных отделах передних, средних и задних мозговых артерий.

Атеросклеротическое поражение интракраниальных сосудов

Васкулиты.

- в большинстве случаев именно атеросклеротическое поражение является причиной стеноза интракраниальных артерий. Но есть целый ряд врожденных и приобретенных заболеваний, которые могут привести к стенозированию просвета сосуда и развитию НМК (нейрокожные синдромы, аплазия и гипоплазия артерий, болезнь Мойя-Мойя, системные заболевания соединительной ткани и васкулиты).
- Первичные ангииты ЦНС обычно являются быстропрогрессирующими заболеваниями, с формированием многочисленных зон инфаркта ГМ. Как правило, изменения в веществе головного мозга супратенториальной локализации.


На изображении слева показаны «сырые» МР-ангиографические данные у больного с васкулитом. На правом изображении, Т1-cor+контраст определяется гиральное усиление вследствие формирований ишемических НМК. Первичный артериит ЦНС

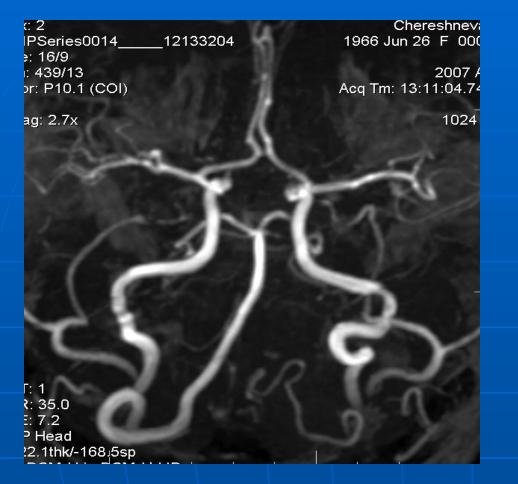

Классификация стенозов артерий.

- 0-29% малый стеноз;
- 30-49% умеренный стеноз;
- 50-59% выраженный стеноз;
- 60-79% субкритический стеноз;
- 80-99% критический стеноз;
- Отсутствие визуализации полная окклюзия

В вопросе выбора тактики лечения (консервативного, эндовазального или хирургического) принципиальным моментом является градация стенозов магистральных артерий на 2 категории – стеноз менее 50% не рассматривается как объект хирургического вмешательства, И стеноз более 70-75% - является показанием для проведения эндовазального и хирургического лечения.

Стеноз левой средней мозговой артерии

Полная окклюзия левой подключичной артерии


Патологические деформации и аномалии магистральных артерий

• C-, S-образная извитость.

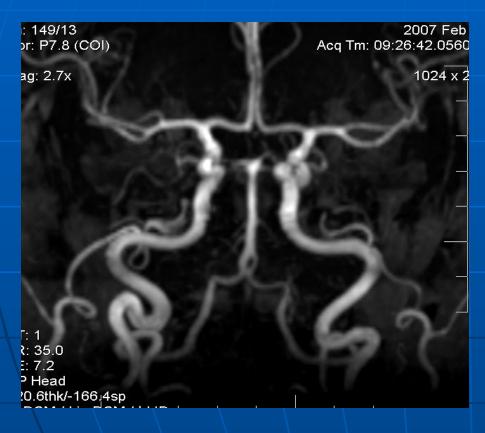
 Перегиб артерии под острым углом (кинкинг).

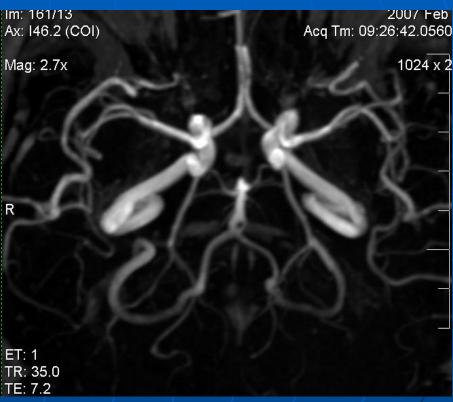
 Патологическое петле и спиралеобразование (койлинг).

 Сочетание различных вариантов деформаций.

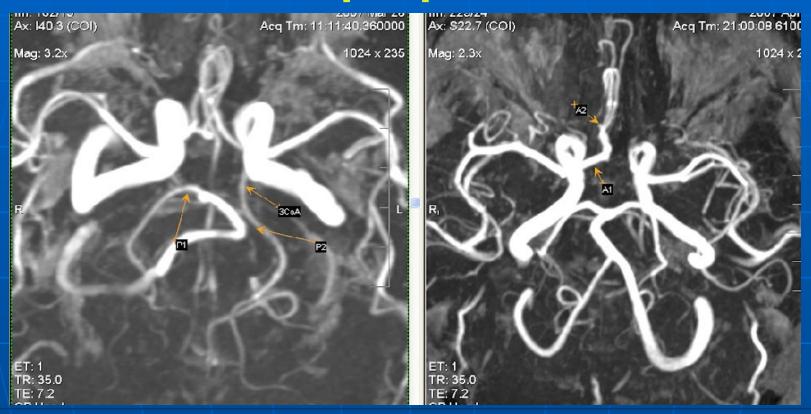
С-образная извитость левой внутренней сонной артерии; S-образная извитость и гипоплазия левой позвоночной артерии. Неслияние позвоночных артерий.

Кинкинг (искривление под острым углом) обеих внутренних сонных артерий


Койлинг (патологическое петлеобразование)



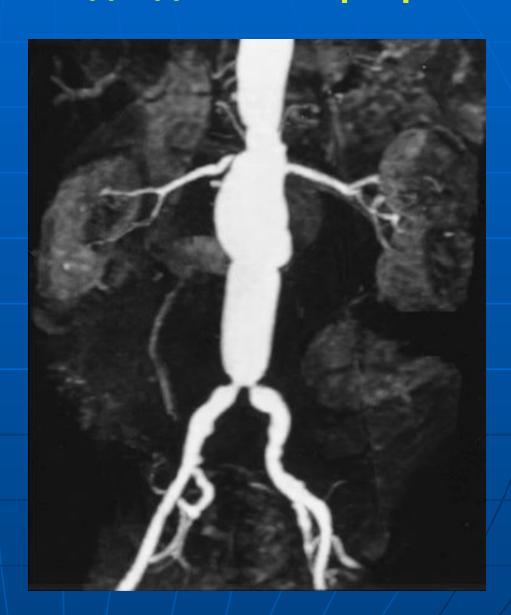
Классификация встречающихся вариантов строения артерий мозга (по Р.М. Беленькой 1979 г.).


- 1. аплазия отсутствие артерии.
- 2. гипоплазия резкое уменьшение диаметра артерии.
- 3. гиперплазия резкое увеличение диаметра артерии.
- 4. уменьшение количества артерий.
- 5. присутствие добавочных атипичных артерий.
- 6. различные варианты атипичного ответвления артерий от магистральных сосудов.
- 7. слияние парных артерий в один ствол.
- 8. неслияние соединяющихся артерий.
- 9. островковое разделение артерий на ограниченном участке.
- 10. переход самой артерии или ее ветви в противоположенное полушарие.
- 11. плексиформное строение артерий.
- 12. асимметрия диаметра парных артерий разных сторон.
- 13. преобладающее развитие одной артериальной системы при гипоплазии другой.
- 14. присутствие персистирующих эмбриональных артерий.
- 15. прочие виды атипичной конфигурации артерий.

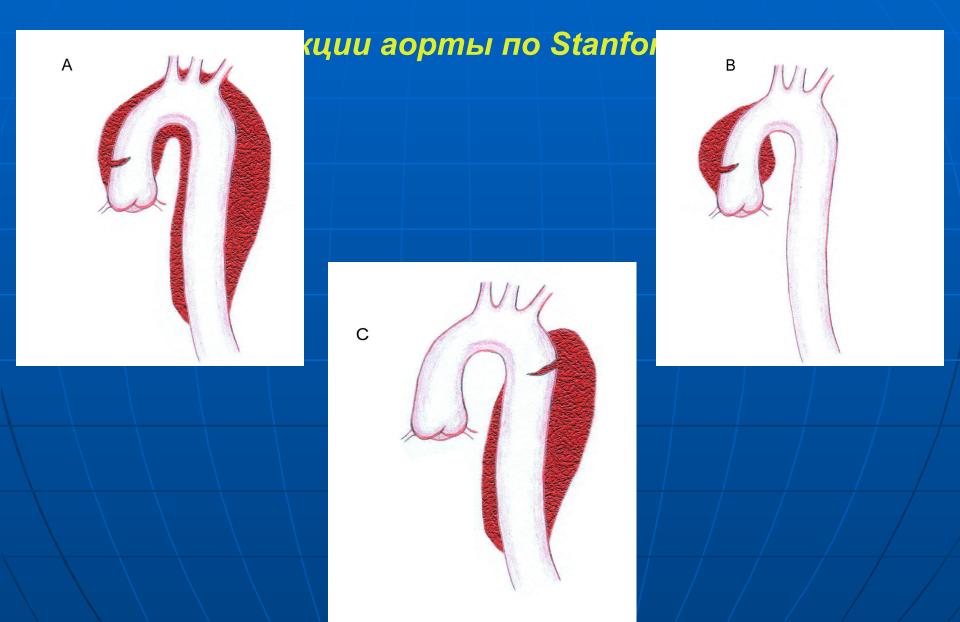
Островковое разделение проксимальных отделов основной артерии.

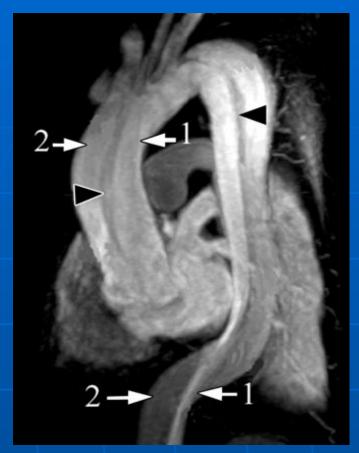
Трифуркации внутренних сонных артерий.

На изображении справа определяется полная задняя трифуркация левой ВСА. На изображении слева определяется передняя трифуркация правой ВСА.

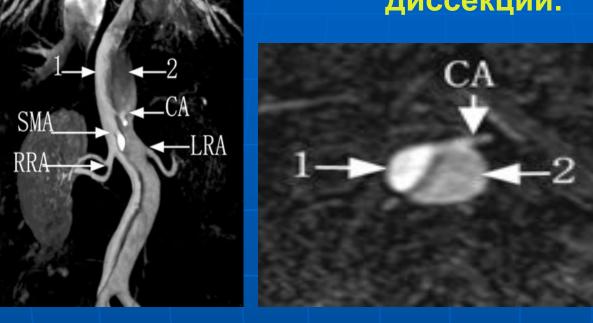

Сосуды брюшной полости.

1. Аневризма брюшного отдела аорты.

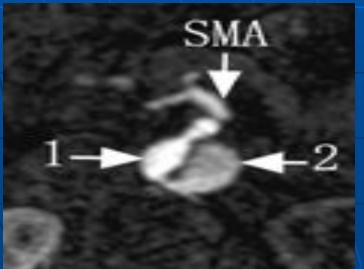

- Истинная аневризма характеризуется расширением всех 3 слоев сосудистой стенки. Возраст, мужской пол и курение являются наиболее важными факторами риска. Возможно сочетание аневризмы аорты и брюшных артерий. Возможно ограниченное или генерализованное расширение аорты. В зоне дилатации возможно выявление тромботических масс.
- МР-ангиография позволяет определить локализацию аневризмы, отношение ее к ветвям аорты; воспалительно-инфильтративные изменения в окружающей клетчатке, нечеткость контуров аневризмы и угрозу перфорации-при визуализации контрастного вещества во внесосудистом пространстве.


Аневризма инфраренального отдела аорты, стеноз устьев обеих подвздошных артерий.

Расслаивающая аневризма аорты. Различные



Диссекция аорты. МІР-реконструкция, МРаортография в в/венным контрастированием. а) косо-сагитальное МІР-изображение. Показана отслоенная интима (головка черной стрелки) истинный (1) и ложный (2) просветы аорты. б) Т2аксиальное МІР-изображение на уровне легочного ствола. Визуализируется ослоенная интима (черная стрелка), истинный просвет овальной формы (1) и ложный просвет серповидной формы


Возможности МР-ангиографии в диагностике

кровотока по висцеральным ветвям аорты при ее

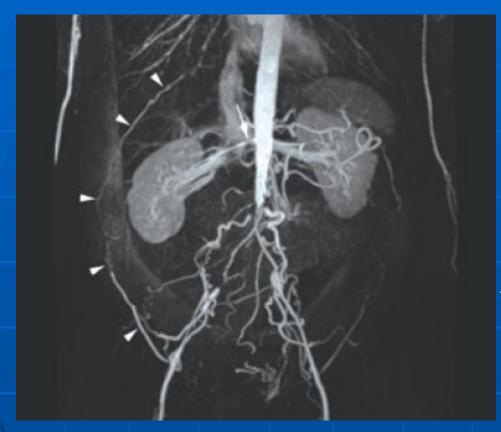
диссекции.


Диссекция аорты. 1истинный просвет аорты; 2-ложный просвет аорты; SMA-верхняя брыжеечная артерия; САчревный ствол; LRA-левая почечная артерия; RRA-правая почечная артерия.



Хроническое окклюзионное поражение аорты.

- Обычно имеются признаки атеросклеротических окклюзий и стенозов. Характерно изолированное поражение аорты, но может быть сочетание поражение аорты с подвздошными артериями.
- Данные МРТ: стеноз или окклюзия аорты обычно выявляется в дистальном ее отделе, около бифуркации (кзади), как правило, выраженность коллатерального кровообращения. МРА позволяет визуализировать локализацию, протяженность и степень стенотического поражения и особенности коллатерального кровотока.



Мультифокальное поражение инфраренального отдела аорты и ее ветвей. Корональный (слева) и сагиттальный (справа) МІР 3D изображения, артериальная фаза контрастирования. Определяется окклюзия инфраренального отдела аорты, левой почечной и нижней брыжеечной артерий. На этом фоне визуализируется фузиформная аневризма правой почечной артерии и определяется сосуд, кровоснабжающий левые отделы толстой кишки (головки стрелок).

Синдром Лериша-

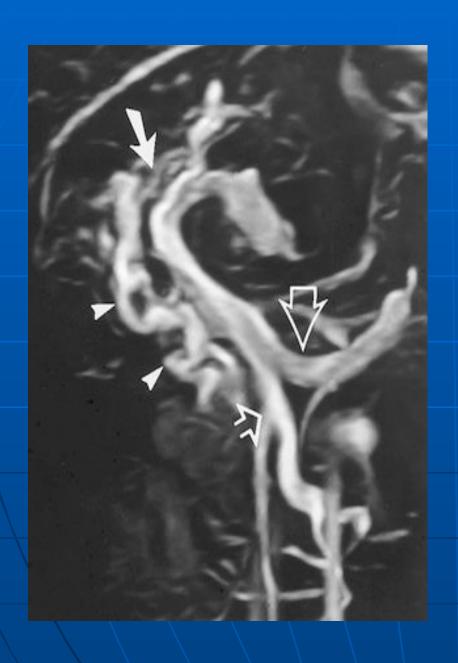
полная облитерация бифуркации аорты, аортоподвздошная окклюзия. Редко встречающийся случай окклюзионного поражения периферических артерий. Начинается окклюзионный процесс с инфраренального отдела аорты, распространяясь на подвздошные артерии. Поддержание периферической перфузии происходит обычно за счет хорошо развитой системы коллатералей (артерии грудной и брюшной стенки).

Определяется окклюзия инфраренального отдела аорты, уровня бифуркации и обеих общих подвздошных артерий. В бедренных артериях кровоток визуализируется за счет хорошо развитых коллатералей. Головки стрелок показывают коллатераль из правой VI межреберной артерии, впадающую в правую бедренную артерию. Стрелка показывает сопутствующий стеноз правой почечной артерии.

Аневризмы висцеральных артерий.

- Наиболее часто поражается селезеночная артерия. Затем по частоте встречаемости следуют печеночная артерия, верхняя брыжеечная артерия и чревный ствол. Остальные висцеральные артерии поражаются гораздо реже. Селезеночная артерия единственная висцеральная ветвь, поражение которой у женщин встречается чаще, чем у мужчин (соотношение 4:1)-важную роль играет большое число беременностей и родов.
- Данные MPA с внутривенным контрастированием (3D MIP реконструкция) позволяют определить локальную дилатацию стенки сосуда и значительное контрастное усиление зоны дилатации, а также область вторичного тромбоза. За счет использования различных проекционных режимов выявляется детальная информация о морфологических и топографических характеристиках сосудов.

Больших размеров аневризма селезеночной артерии у пациента с портальной гипертензией.


Портальная гипертензия.

повышение давления в системе воротной вены. В норме диаметр воротной вены до 13 мм. Увеличение ее диаметра более 1,5 см может свидетельствовать о развитии портальной гипертензии.

Типы блоков и их причины.

- Предпеченочный-вследствие тромбоза селезеночной или воротной вен;
- Интрапеченочный (шистосомоз, цирроз печени, болезнь Вильсона-Коновалова);
- Надпеченочный блок (окклюзия печеночных, нижней полой вены), опухолевая компрессия.


Наиболее часто встречается интрапеченочный блок. При развитии портальной гипертензии может активироваться коллатеральное кровообращение- расширении вен желудка, пищевода; варикозное расширение вен передней брюшной стенки («голова медузы»), спленореральное коллатеральное

Тромбоз воротной вены подпеченочный блок. (стрелка), варикозное расширение и извитость коллатерального сосуда латеральнее ствола воротной вены (головки стрелок). Кровоток в селезеночной вене менее интенсивный по сравнению с верхней брыжеечной, т.к. часть контраста депонировалось в селезенке.

Мембразнозная обструкция нижней полой вены (выше уровня диафрагмы, с отсутствием детектируемого кровотока в верхних отделах нижней полой вены. Также определяеются 3 расширенных ствола печеночных вен, сходящихся по направлению к нижней полой вены. Синдром Бадда-Киари (надпеченочный блок)



Муж., 58 лет с алкогольным циррозом печени.

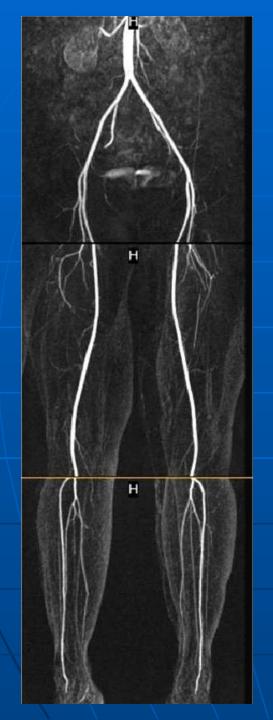
Внутрипеченочный блок. Определяются варикозно расширенные пищеводные, желудочные, селезеночные вены. Открытая стрелка показывает воротную вену, белая закрытая стрелка показывает нижнюю полую вену.

Стеноз почечной артерии.

- В 5% случаев является причиной развития артериальной гипертензии. Стоит на 3-м месте (после сахарного диабета и гипертонической болезни) в группе причин развития почечной недостаточности.
- Этиология: фибро-мускулярная дисплазия, атеросклероз, васкулиты, сдавление почечной артерии опухолью.
- Может быть асимметрия размеров почек.
 Возможна визуализация участка постстенотической дилатации, развития коллатералей.
- Данные МРТ: определяется локализация, протяженность стенотического поражения, дилатации сосуда дистальнее места стеноза, развитие коллатерального кровотока.

МРА изображение, МІР с внутривенным контрастным усилением, артериальная фаза. Определяется СТЕНОЗ проксимального отдела правой почечной артерии (стрелка). Участков стенотического сужения в левой почечной артерии не определяется.

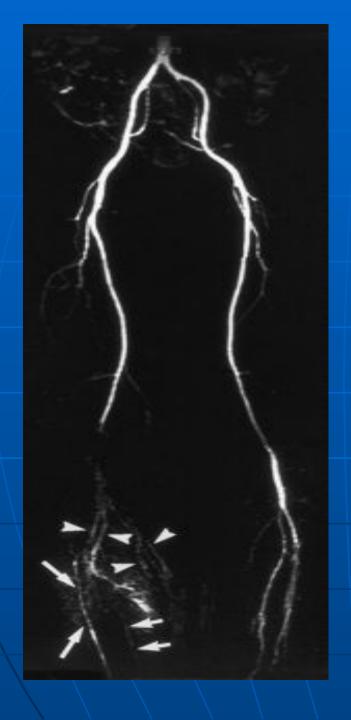
Фиброзно-мышечная дисплазия.


- Является причиной развития артериальной гипертензии у детей и подростков в 70% случаев. Чаще всего поражаются почечные артерии (второе по частоте место- границе C1-C2 сегмента внутренней сонной артерии), приблизительно в 1/3 случаев поражение двустороннее.
- МРТ-картина: чередование участков стеноза и просвета сосуда в виде бусин (артерия в виде бусин на нити), причем диаметр «бусин» может быть как больше, так и меньше нормального диаметра артерии. Но может проявляться и изолированным локальным стенозом, вызванным гиперплазией меди в таком случае необходима дифференциальная диагностика со стенозом почечной артерии. Для ФМД характерно поражение средней трети почечных артерий, чаще у женщин моложе 40 лет; также могут вовлекаться внутренняя сонная, подвздошные артерии.

Фибро-мускулярная дисплазия правой

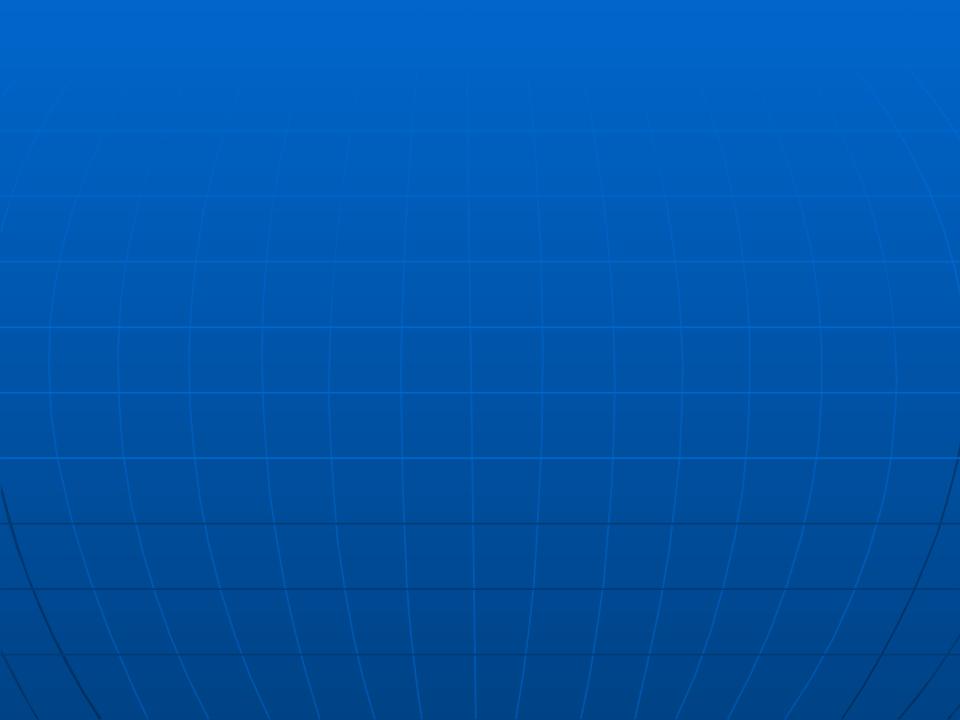
Окклюзионные поражения нижних конечностей.

- Наиболее часто обнаруживаются у больных ИБС, с инсультом в анамнезе. В 90% случаев пациенты с атеросклеротическим поражением периферических артерий являются курильщиками.
- Этиология, патогенез: атеросклерозразвитие бляшки-стенозирование или окклюзия просвета артерии. Происходит развитие коллатерального кровообращения. Фаторы риска: курение, сахарный диабет, нарушение обмена веществ, артериальная гипертензия и пожилой возраст.



МР-ангиография после внутривенного динамического контрастирования гадолиний-содержащим препаратом, артериальная фаза. МР-картина нормы.

Инфраренальный отдел аорты и подвздошные артерии


Уровень артерий бедра справа и слева

Уровень артерий голени справа и слева

Жен. 62 лет с перемежающейся хромотой. МРА в внутривенным контрастированием, субтракционное изображение. Определяется окклюзия правой подколенной артерии. Дистальнее места окклюзии дифференцируются передняя большеберцовая артерия (длинные стрелки) и малоберцовые артерии (головки стрелок), кровоток в которых сохранен за счет коллатеральных сосудов.

СПАСИБО ЗА ВНИМАНИЕ!

