ALLERGOLOGY

GENERAL PRINCIPLES: LECTURE 1

Allergy definition

- Type of hypersensitivity reactions of the immune system.
- may involve more than one type of reaction.

Important factors

Host factors; heredity, gender, race, and age.

- Environmental factor; infectious diseases during early childhood, environmental pollution, allergen levels and dietary changes.
- Site specific factors (peculiarities of the local receptors)

Gel and Coombs classification of hypersensitivities

- Type I -immediate hypersensitivity -IgE-mediated.
- Type II antibody-dependent cytotoxic hypersensitivity (with participation of natural killer cells, eosinophils, macrophages), complement
- Type III immune complex disease) circulating antigen-antibody immune complexes deposited in vessels or tissue
- Type IV delayed hypersensitivity T-cell-mediated;

Gel and Coombs classification of hypersensitivities.

Allergen Fc receptor for IgE Allergen-specific IgE Degranulation Type I	Target antigen Complement activation Immune complex Type II	Immune complex (3b) Complement activation Neutrophil Type III	Sensitized TDTH Cytokines Activated macrophage Type IV
IgE-Mediated Hypersensitivity	IgG-Mediated Cytotoxic Hypersensitivity	Immune Complex-Mediated Hypersensitivity	Cell-Mediated Hypersensitivity
Ag induces crosslinking of IgE bound to mast cells and basophils with release of vasoactive mediators	Ab directed against cell surface antigens meditates cell destruction via complement activation or ADCC	Ag-Ab complexes deposited in various tissues induce complement activation and an ensuing inflammatory response mediated by massive infiltration of neutrophils	Sensitized TDTH cells release cytokines that activate macrophages or T _C cells which mediate direct cellular damage
Typical manifestations include systemic anaphylaxis and localized anaphylaxis such as hay fever, asthma, hives, food allergies, and eczema	Typical manifestations include blood transfusion reactions, erythroblastosis fetalis, and autoimmune hemolytic anemia	Typical manifestations include localized Arthus reaction and generalized reactions such as serum sickness, necrotizing vasculitis, glomerulnephritis, rheumatoid arthritis, and systemic lupus erythematosus	Typical manifestations include contact dermatitis, tubercular lesions and graft rejection

Sell et al. classification

- Inactivation/activation antibody reactions
- Cytotoxic or cytolytic antibody reactions
- Immune-complex reactions
- Allergic reactions
- T-cell cytotoxic reactions
- Delayed hypersensitivity reactions
- Granulomatous reactions

Immediate Hypersensitivity Reactions

Updated: Feb 09, 2015

Author: Becky Buelow, MD, MS; Chief Editor: Michael A Kaliner, MD more...

https://emedicine.medscape.com/article/136217-overview

Pathogenesis

- Allegren processing and presenting peptides from allergens on MHCII class: dendritic cells in mucosal surface
- MHC class II molecule+antigen complex: ligand of T-cell receptors on Naive CD4⁺ T cells
- Naive CD4⁺ T cells differentiation to allergen-specific Th2 cell
- Th2 cells: cytokines, promoting isotype switching of B cells to produce specific IgE and proliferation of eosinophils, mast cells and neutrophils
- Produced antigen-specific IgE binds to high-affinity IgE receptors on mast cells or basophils.

Type I

- Antigen binds to IgE bound to tissue mast cells and blood basophils
- release of preformed mediators (histamine, proteases, chemotactic factors)
- synthesis of other mediators (prostaglandins, leukotrienes, platelet-activating factor, cytokines).
- mediators cause vasodilation, increased capillary permeability, mucus hypersecretion, smooth muscle spasm, and tissue infiltration with eosinophils, type 2 helper T (T_H2) cells, and other inflammatory cells.
- atopic disorders (allergic asthma, rhinitis, conjunctivitis), anaphylaxis, some cases of angioedema, urticaria, and latex and some food allergies. Type I reactions develop <
 1 h after exposure to antigen.

Main mediators: Pre-existing

- Histamine (H1, H2 receptors): smooth muscles contraction in airways and GI, vasodilation and leakage (incl.skin), increased mucus production, itching
- Tryptase: released by mast cells; cleave C3, C3a, airways remodeling
- Proteoglycans: inclheparin and chondroitin sulfate
- Chemotactic factors:
- eosinophilic chemotactic factor of anaphylaxis Eos chemotaxis
- inflammatory factor of anaphylaxis neutrophil chemotaxis major basic protein (released by Eos)
- THIUS tissue damage in the later phases of allergic reactions.

Main mediators: newly synthesized

- Leucotriens: B4 (Neutrophils, vessels permeability); C4, D4 –
 bronchoconstriction, vessels permeability, arteriolar constriction; E4
 bronchial responsiveness; vascular permeability
- Prostaglandins: bronchoconstriction, peripheral vasodilation, coronary vasoconstriction; D2 also pulmonary artery constriction, increase of histamine release
- Thromboxane A2 broncho- and vasoconstriction, platelet aggregation
- Platelet-activating factor (PAF): bronchoconstriction, increases vascular permeability, causes, eosinophils and neutrophils chemotaxis and degranulation
- Adenosine: bronchoconstrictor, potentiates IgE-induced mast cell mediator release.
- Cytokines: IL-4 (maintains TH2 cell proliferation, B cells switch to IgE synthesis); IL-5 maturation, chemotaxis, activation, and survival of eosinophils. primes basophils for histamine and leukotriene release; IL-6 (mucus production) IL-13 (same effects as IL-4)

Type II

antibody-dependent cytotoxic hypersensitivity

- antibody binds to cell surface antigens or to a molecule coupled to a cell surface.
- antigen-antibody complex activates cells that participate in antibody-dependent cell-mediated cytotoxicity (natural killer cells, eosinophils, macrophages), complement, or both.
- hyperacute graft rejection of an organ transplant, Coombs-positive hemolytic anemias, Hashimoto thyroiditis, and anti-glomerular basement membrane disease (eg, Goodpasture syndrome)

Type III reactions (immune complex disease)

- circulating antigen-antibody immune complexes deposited in vessels or tissue.
- activate the complement system or bind to and activate certain immune cells, resulting in release of inflammatory mediators.
- immune complexes deposite in various tissues (glomeruli, blood vessels)
- isotype of induced antibodies changes, and glycosylation, size, and charge of the complex's components contribute to the clinical response.
- serum sickness, SLE, RA, leukocytoclastic vasculitis, cryoglobulinemia, hypersensitivity pneumonitis, and several types of glomerulonephritis.
- develop 4 to 10 days after exposure to antigen and, if exposure to the antigen continues, can become chronic.

Type IV reactions (delayed hypersensitivity)

- T cells, sensitized after contact with a specific antigen, are activated by reexposure to the antigen
- tissue damage by direct toxic effects/cytokines release
- Activation of eosinophils, monocytes and macrophages, neutrophils, or natural killer cells.
- contact dermatitis (poison ivy), hypersensitivity pneumonitis, allograft rejection, immune response to TB, and many forms of drug hypersensitivity.

Type I: Atopic and Allergic Disorders

- Allergy: is any abnormal immune response to a foreign antigen regardless of mechanism.
- Atopy: IgE-mediated abnormal immune response; all atopic disorders are type I hypersensitivity disorders.

Spectrum of atopic diseases

- Nose allergic rhinitis
- Eyes allergic conjunctivitis
- Skin: extrinsic atopic dermatitis, immune-mediated urticaria, immune-mediated angioedema, acute latex allergy
- Bronchi and lungs: (some cases of asthma, IgE-mediated components of allergic bronchopulmonary aspergillosis)
- allergic reactions to venomous stings
- Systemic: anaphylaxy, hay fever

Latex Sensitivity

- Abnormal immune response to water-soluble proteins in latex products (rubber gloves, dental dams, condoms, tubing for respiratory equipment, catheters, enema tips with inflatable latex cuffs)
- acute (IgE-mediated)/delayed (cell-mediated).
- Acute: urticaria, anaphylaxis
- Delayed: dermatitis.
- Skin may be irritated and crusted not allergy, usually chemical irritation
- Diagnosis: history; assays for detecting IgE antilatex antibodies are available; skin testing is available in Europe and Canada, but not routinely in the US.
- Treatment: avoidance of latex, latex-free gloves

Etiology: multifactorial

- Environment
- Genetic
- Site specific

Genetic:

- familial inheritance
- association between atopy and HLA loci (peptides promoting Th2 response).
- polymorphisms of genes: for the high-affinity IgE receptor β-chain, IL-4 receptor α-chain, IL-4, IL-13, CD14, dipeptidyl-peptidase 10 (DPP10), and a disintegrin and metalloprotease domain 33 (*ADAM33*).

Environmental factors: Allergens

- Proteins: serum, vaccines
- Pollen: rye grass, timothy grass, birch trees, ragweed and lots...
- Food: nuts, seafood, eggs, peas, beans, citrus, apples (not green), honey, milk, chocolate, grapes, peaches, nuts, tomatoes...
- Epidermal: epidermis of cats, dogs, horses etc
- Drugs: penicillin, sulfonamides etc (adverse reactions are not allergy), sometimes even glucocorticosteroids
- Insect products (bee, wasp, ant venoms, cocroach calyx, house dist mites etc)
- Mold spores

Environmental factors and Th2 reponce

- Environmental factors interact with genetic ones to maintain type 2 helper T (T_H2) response
- T_H2 cells activate eosinophils, promote IgE production, and are proallergic
- Late exposure to indoor and outdoor environmental factors in infants
- chronic allergen exposure and sensitization
- Diet
- environmental pollutants.

Late exposure to indoor and outdoor environmental factors in infants

- early childhood exposure to bacterial and viral infections and endotoxins (lipopolysaccharide etc) shifts T_H2-cell responses to T_H1-cell responses and suppression of T_H2 mediated reactions.
- This is mediated by regulatory T (CD4+CD25+Foxp3+; T_{reg}) cells (capable of suppressing T_H2-cell responses) and IL-12-secreting dendritic cells (drive T_H1-cell responses)
- Trends to smaller families, fewer children, cleaner indoor environments, early use of antibiotics may limit children's exposure to the infectious agents/decrease shift to predominantly T_H1-cell response
- Because of this increased prevalence of some allergic disorders.

Site-specific factors

- adhesion molecules in bronchial epithelium/ skin
- molecules in the GI tract that direct T_H2 cells to target tissues.

Pathophysiology

- Mast cells are widely distributed but are most concentrated in skin, lungs, and GI mucosa
- Allergen + IgE-sensitized mast cells/ basophils
- Histamine release from intracellular granules

Phases of allergic reaction (on example of atopic asthma)

Immediate Hypersensitivit y Reactions Updated: Feb 09, 2015 Author: Becky Buelow, MD, MS; Chief **Editor: Michael** A Kaliner, MD more... https://emedici ne.medscape.co m/article/13621 7-overview

Other than histamin mediators pre-formed in mast cells granules

- Cytokines TNF-α, IL-1, IL-6.
- Chemoattractants for Neutrophils and Eosinophils.
- Enzymes
 - tryptase, chymase, cathepsin.
 - Changes in connective tissue matrix, tissue breakdown.
- Leukotrienes
- Prostaglandins
- Th2 cytokines- IL-4, IL-5, IL-13, GM-CSF

Histamine effects

- Local vasodilation (causing erythema)
- Increased capillary permeability and edema (producing a wheal)
- Vasodilation of surrounding arterioles mediated by neuronal reflex mechanisms (causing flare – the redness around a wheal)
- Stimulation of sensory nerves (causing itching)
- Smooth muscle contraction in the airways (bronchoconstriction) and in the GI tract (increasing GI motility)
- Increased nasal, salivary, and bronchial gland secretions

Frequent histamine release:

- potent arteriolar dilator
- causes extensive peripheral pooling of blood and hypotension
- cerebral vasodilation factor in vascular headache.
- loss of plasma and plasma proteins from the vascular space which worsens circulatory shock.
- this loss triggers a compensatory catecholamine response

Non-specific/non-allergic histamin liberation

- physical disruption of tissue and various substances (tissue irritants, opiates, surface-active agents, complement components C3a and C5a) can trigger histamine release directly, independent of IgE
- This causes pseudoallergic symptoms

Continuation of sensitization cycle Eosinophils

- Eosinophils play key role in late phase reaction.
- Eosinophils make
 - enzymes,
 - cytokines (IL-3, IL-5, GM-CSF),
 - Lipid mediators (LTC4, LTD4, PAF)
- Eosinophils can provide CD40L and IL-4 for B cell activation.

Types of allergens

- Pollen
- Dust
- Epidermal
- Food
- Drugs
- Insect venom, cocroaches etc
- Latex

Pollen Canada (shortened)

Tree pollen	Grass pollen	Weed pollen	Mould spores	
British Columbia (Coastal)	to mid-July • Primarily deciduous trees (alder, birch, poplar, elm,	September	Not usually a major factor; no native ragweed	 Levels higher in the spring; increase further in September and October Most prevalent spores: Cladosporium and basidiomycetes
British Columbia (Interior)	mid-July • Primarily deciduous trees (willow, birch, poplar)	May in southern parts of	Ragweed is minimal	Cladosporium can occur from April to late fall

Moote, W., Kim, H. Allergen-specific immunotherapy. *All Asth Clin Immun* **7,** S5 (2011).

https://doi.org/10.1186/1710-1492-7-S1-S5

Common symptoms

- upper respiratory tract: rhinorrhea, sneezing, and nasal congestion, itching, nasal turbinate edema, sinus pain during palpation
- lower respiratory tract: wheezing, dyspnea, stridor (in severe cases)
- Skin: itching, urticaria, angioedema, dermatitis, and skin lichenification
- Eyes: itching, conjunctival hyperemia and edema.
- Systemic: fever (hay fever), hypotension and shock (in anaphylaxis)

Diagnosis

- Clinical evaluation
- CBC
- serum IgE levels
- skin testing and allergen-specific serum IgE testing (specific tests)
- Rarely provocative testing

Clinical evaluation

- frequency and duration of attacks and changes over time
- Identification of triggering factors
- Relation to seasonal or situational settings (predictably occurring during pollen seasons; after exposure to animals, hay, or dust; during exercise; or in particular places)
- Family history of similar symptoms or of atopic disorders
- Responses to attempted treatments
- Age at onset: childhood asthma is likely to be atopic and asthma beginning after age 30 is not.
- Professional anamnesis: latex products, other allergens

Allergologic anamnesis

- 1. Allergic diseases in case history: asthma, pollinosis, urticaria, quincjedema, migraine, exema, allertic rhinitis, allergic dermattis etc, other allertic skin diseases, drug allergy, serim diseases (date and manifestations)
- 2. Allergic diseases in relatives in past and nowadays
 a) father/relatives
- 6) mother/relatives
- г) children
- 4. Serum reaction and vaccination reaction (what/when)

- 5. Drug reaction (what/when); anaphylactic shock, urticaria, quickedema, bronchospasm, dermatites of different types, itching, allergic rhinitis, conqunctivitis (dates, type of reaction)
- 5.1. antibiotics: pelicillines
- Aminoglycosides
- Streptomycine
- Sintomycine, levomycetine
- Other antibiotics
- 5.2. sulfonamides
- 5.4. local anesthetics
- 5.5. iodine containing drugs
- 5.6. B group vitamines
- 5.7. other drugs
- 5.8.other side reactions: dizziness, nausea, fever, vomiting, disbiosis etc (with data)

- 6. seasonal exacerbations (summer, autumn, winter, spring)
 - 7. climate influence on the disease course
- 8. weather and physical factors influence (cold, heating)
- 9. physical exercise, negative emotions etc
- 10. relation to respiratory infections (viral infections, brohcitis, tonsillitis, pneumonia)
- 11. relation to menstrual cycle, feeding, pregnancy, delivery

- 12. where is worse at home, at the working place, in the street, in the forest, at the day or night
- 13. influence of food, drinks, alcohol, cosmetic, antiinsects, dust, smells, animals, clothes, bad settings
- 14. situation at home (material of which the home is built, warming, is there a wet surroundings, carpets, furniture, books, bed settings, animals, fishes)
- 15. working conditions and their changes during the life

Non-specific tests

- CBC: eosinophilia (except patients taking corticosteroids); normal eosinophil count does not exclude allergy. Total WBC is usually normal.
- Anemia and thrombocytosis not typical, indicate systemic inflammatory disorder.
- Conjunctival / nasal secretions/sputum: WBC, formula (eosinophilia suggests probability of T_H2-response)
- Serum IgE levels: elevated (also in parasitic infections, infectious mononucleosis, autoimmune disorders, drug reactions, hyper-IgE syndrome, Wiskott-Aldrich syndrome, some forms of multiple myeloma.

Specific tests:

- Allergen-specific serum IgE tests: enzyme-labeled anti-IgE antibody
- Performed when skin testing might be ineffective or risky or in case of skin diseases (eczema/psoriasis) which make skin testing difficult
- allergen is immobilized on a synthetic surface, substrate for the enzyme is then added; the substrate provides colorimetric fluorescent or chemiluminescent detection of binding.

Skin tests

- standardized concentrations of antigen introduced directly into skin
- higher positive predictive values for diagnosing allergic rhinitis and conjunctivitis than for diagnosing allergic asthma or food allergy; negative predictive value for food allergy is high.
- most commonly used antigens are pollens (tree, grass, weed), molds, house dust mites, animal danders and sera, insect venom, foods, and β -lactam antibiotics.

Two skin test techniques can be used:

- Percutaneous (prick)
- Intradermal

Percutaneous (prick):

- drop of antigen extract is placed on the skin
- skin is tented up and pricked or punctured
- through the extract with the tip of a 27-gauge needle held at a 20° angle or with a commercially available prick device.

Intradermal

- more sensitive
- less specific
- can be used to evaluate sensitivity to allergens when prick test results are negative or equivocal:
- typically 0.02 mL is injected intradermally with a 0.5- or 1-mL syringe and a 27-gauge short-bevel needle.

Necessary for both

- Negative control: diluent
- Positive control histamine (10 mg/mL for prick tests, 0.01 mL of a 1:1000 solution for intradermal tests)
- For patients who have had a recent (< 1 yr) generalized reaction to the test antigen
- testing begins with the standard reagent diluted 100-fold
- then 10-fold
- then the standard concentration.

- Drugs which can interfere with results and should be be stopped a few days to a week before testing:
- Antihistamines
- tricyclic antidepressants,
- monoamine oxidase inhibitors;
- some recommendations insist on cessation of β-blockers because these patients are more likely to have risk factors for severe reactions.

Positive test results

- Diluent negative
- Histamin positive
- Causative allergen: positive
- Postive means
- wheal and flare reaction
- wheal diameter is 3 to 5 mm more than that of the negative control after 15 to 20 min.

Negative test result

- Diluent negative
- Histamin positive
- Causative allergen: negative
- Skin reacts on histamin normally, but allergens don't cause the reaction

False positive

Diluent – positive Histamine – positive Allergen - positive

Cause may be dermatographism (a wheal and flare reaction provoked by stroking or scraping the skin).

False negative

Diluent – negative Histamine – negative Allergen - negative If used from one kit

Cause - allergen extracts have been stored incorrectly or are outdated.

False negative-2

- Histamine is positive, allergens are negative, but there is strong evidence of allergy
- histamine sample is still active or histamine is used from another kit, histamine reaction may be positive
- Patient may not react on commersial variant of allergens (some common house dust, common cat's or dog's epidermis), but may react on the allergens from his own environment
- In case if this is suspected, individual allergens should be performed

Individual allergens

- Concrete house dust taken from patients home
- Epidermis of the concrete cat, dog etc
- In cases when the anamnestic signs are present, but tests give negative results

Other specific tests

- Provocative testing: exposure of the mucosae to allergen and is indicated for patients who must document their reaction (for occupational or disability claims), sometimes for diagnosis of food allergy, cold-induced urticaria etc
- Ophthalmic testing: no advantage over skin testing and is rarely used.
- Nasal and bronchial challenge: primarily research, but bronchial challenge is sometimes used when the clinical significance of a positive skin test is unclear or when no antigen extracts are available (for occupation-related asthma)

Treatment

- Removal or avoidance of allergic triggers
- H₁ blockers
- Mast cell stabilizers
- Anti-inflammatory corticosteroids and leukotriene inhibitors
- Immunotherapy (desensitization)

H1 blockers

HI DIOCKERS					
Drug		Usual Adult Dosage	Available Preparations		
Sedating					
Brompheniramine	4 mg q 4-6 h or 8 mg q 8-12 h		4-, 8-, and 12-mg tablets 2 mg/5 mL elixir 8- and 12-mg tablets (sustained-release)		
Chlorpheniramin e	2–4 mg q 4–6 h		2-mg chewable tablets 4-, 8-, and 12-mg tablets 2 mg/5 mL syrup 8-/12-mg tablets/ capsules (timed-release)		
Clemastine	1.34 mg (1.0 mg of base) bid to 2.68 mg tid		1.34- and 2.68-mg tablets 0.67 mg/5 mL syrup		
Cyproheptadine	4 mg tid or qid (maximum 0.5 mg/kg/day)		4-mg tablets [†] 2 mg/5 mL syrup		
Dexchlorphenira mine	2 mg q 4-6 h		2-mg tablets 2 mg/5 mL syrup 4- and 6-mg tablets (extended-release)		
Diphenhydramin e	25–50 mg q 4–6 h		25- and 50-mg capsules or tablets 12.5 mg/mL syrup 12.5 mg/5 mL elixir		
Hydroxyzine	25–50 mg tid	or qid	25-, 50-, 100-mg capsules 10-, 25-, 50-, and 100-mg tablets 10 mg/5 mL syrup 25 mg/5 mL oral susp.		

Nonsedating

Acrivastine/pseudoephedrine	8/60 mg bid or tid	8-mg acrivastine plus 60-mg pseudoephedrine capsul es
Cetirizine	5–10 mg once/day	5- and 10-mg tablets 1 mg/mL syrup
Desloratadine	5 mg once/day	5-mg tablets 0.5 mg/mL syrup
Fexofenadine	60 mg bid or 180 mg once/day	30-, 60-, and 180-mg tablets 6 mg/mL oral suspension
Levocetirizine	5 mg once/day	5-mg tablets 0.5 mg/mL oral suspension
Loratadine	10 mg once/day	10-mg tablets 1 mg/mL syrup
Mizolastine	10 mg once/day	10-mg tablets

Attention!

- All sedating antihistamines have strong anticholinergic properties.
- they should not be used in the elderly or in patients with glaucoma, benign prostatic hyperplasia, constipation, delirium, dementia, or orthostatic hypotension.
- Commonly cause dry mouth, blurred vision, urinary retention, constipation, and orthostatic hypotension.

Specific immune therapy

- Performed in remission only
- In period without allergens exposure (not in pollen exposure season)
- Allergens used are those which typically cannot be avoided: pollens, house dust mites, molds, and venom of stinging insects.
- Individual allergens can be made (dust allergen in patient's home, epidermis of patient's pet)

Indications

- allergic rhinitis, conjunctivitis, hay fever, atopic asthma of mild course of the disease (all with high IgE); stinging insect (venom) hypersensitivity
- Asthma should be controlled, FEV1 > 70% of predicted
- Atopic dermatitis of mild and moderate course with high degree of sensibilization
- The best results are to house dust mites (2++)
- Also performed if contact with home pet can't be avoided

Contraindications:

- 3-5 step of asthma treatment (moderate/severe course)
- Non Th2-variant (non-atopic, low IgE)
- Current use of glucocorticosteroids (suppress immune reactions)
- Beta-blockers are relative contraindications in venoms hypersensitivity
- Significant comorbidities (cardiovascular etc)
- Anaphylactic shock in case history

Special considerations:

- Children < 6 yrs
 - Pregnancy
 - Elderly
 - Malignancy, immunodeficiency and autoimmune diseases (mentioned in some articles, but autoimmune patients usually have glucocorticosteroid treatment which is absolute contraindication); immunodeficiency depend on nosological units (there are IgE-elevated variants)

Principle

- induction of IgG antibodies
- IgGs compete with IgE for allergen or block IgE from binding with mast cell IgE receptors
- induction of interferon -γ, IL-12, and cytokines secreted by T_H1 cells; or induction of regulatory T cells
- In total switch from Th2 to Th1 responce
- Performed by allergen injection in gradually increasing doses (hyposensitization or desensitization)

Principle: Th2 to Th1 switch

Indian Journal of Allergy, Asthma and Immunology | Jan-Jun 2013 @BULLET Volume 27 @BULLET Issue 1 Allergen immunotherapy: Basic concepts Article Jan 2013

Classification

- Preseasonal
- Preseasonal-seasonal
- Whole year

Principle

- injections are given monthly.
- Dose: start dose from 0.1 to 1.0 biologically active units (BAU), depending on initial sensitivity
- weekly or biweekly 2 times increase
- Until maximum tolerated dose (start of moderate adverse effects)
- maximum tolerated dose is given every 4 to 6 wks year-round

Build-up (induction) phase

- weekly injections
- starting with a very low dose,
- gradual increases in dose over the course of
 3–6 months

maintenance phase

- every 4–6 weeks for venom and every 4 weeks for inhalant allergens
- period of 3–5 years.

Principle

- Observation of patients 30 min postinjection (risk of anaphylaxy)
- Appearance of blood during injectionis the protocol violation; the patients are at high risk for anaphylaxy and should be observed more closely

Specific immune therapy in allergic rhinitis

Moote, W., Kim, H. Allergen-specific immunotherapy. *All Asth Clin Immun* **7,** S5 (2011).

https://doi.org/10.1186/1710-1492-7-S1-S5

Sublingual immunotherapy

- placing a tablet of allergen extract under the tongue until it is dissolved
- available for the treatment of grass and ragweed allergy, as well as house dust mite-induced allergic rhinitis (with or without conjunctivitis).
- Tablets: Oralair[®], Grastek[®], Ragwitek[®] Acarizax[™]
- (see Table 3) [23–26]. The sublingual route of immunotherapy offers multiple potential benefits over the subcutaneous route including the comfort of avoiding injections, the convenience of home administration, and a favourable safety profile. Like subcutaneous immunotherapy, sublingual immunotherapy is indicated for those with allergic rhinitis/conjunctivitis who have not responded to or tolerated conventional pharmacotherapy, or who are adverse to the use of these conventional treatments.

Prevention

- synthetic fiber pillows and impermeable mattress covers
- Frequently washing bed sheets, pillowcases, and blankets in hot water
- Removing upholstered furniture, soft toys, and carpets
- Exterminating cockroaches to eliminate exposure
- Using dehumidifiers in basements and other poorly aerated, damp rooms
- Treating homes with heat-steam
- Using high-efficiency particulate air (HEPA) vacuums and filters
- Avoiding food triggers
- Limiting pets to certain rooms or keeping them out of the house
- Frequently cleaning the house
- Adjunctive nonallergenic triggers (eg, cigarette smoke, strong odors, irritating fumes, air pollution, cold temperatures, high humidity) should also be avoided or controlled when possible.

Food allergy

- Some food antigens stimulate innate immune responses
- peanut allergen Ara h1 binds to CD209 on DCs
- milk sphingomyelin activates type 2 cytokine responses from invariant NKT cells
- Changes in microbial flora: associated with allergic sensitization (supporting protection by specific bacteria and their products) through sustaining intestinal Treg population

Food allergy

The Immunology of Food Allergy Laura K. Johnston, Karen B. Chien and Paul J. Bryce http://www.jimmunol.org/c ontent/192/6/2529 doi: 10.4049/jimmunol.1303026 J Immunol 2014; 192:2529-2534;

Through IL-10-producing Tregs and IgA-secreting B cells; performed by macrophages, CX3CR1⁺ APCs, CD103⁺ DCs

Critical signals for tolerance: retinoic acid (RA), IDO, and TGF-β.

Disturbance of cells or mediators

Initiating signals for sensitization - intrinsic activities of food components on innate cells (NKT), exposure to bacterial toxins, such as SEB.

Th2-response; switch to IgE

Role may play IL-33 and activation of innate lymphoid cells (ILCs).