
ALGORITHMS AND DATA 
STRUCTURES
LECTURE 4 – STACK, QUEUE 
AND HEAP
Askar Khaimuldin
askar.khaimuldin@astanait.edu.kz



CONTENT

1. Preface

2. Stack

3. Queue

4. Heap

5. Heap<T extends Comparable<T>>



PREFACE

 Logical Data Structures
�Linear (Stack, Queue, etc.)
�Non-linear (Tree, Hash-Table, Graph, etc.)

 A Linear data structure has data elements arranged in a sequential manner and each member 
element is connected to its previous and next element 

 Data structures where data elements are attached in hierarchical manner are called non-linear 
data structures. One element could have several paths to another element

 Logical Data Structures are implemented using either an array, a linked list, or a combination of 
both



STACK

 It is a linear data structure that follows the LIFO 
(Last-In-First-Out) principle

 Last added item will be served first

 It has only one end (named as ‘top’) 

 Insertion and deletion operations are performed at the 
top only

 A stack can be implemented using linked list as well as an 
array. However, extra restrictions must be applied in 
order to follow LIFO



STACK:API

 boolean empty() – Returns whether the stack is empty – Time Complexity : O(1)

 int size() – Returns the size of the stack – Time Complexity : O(1)

 T peek() – Returns a reference to the topmost element of the stack – Time Complexity : O(1)

 T push(T) – Adds the element at the top of the stack – Time Complexity : O(1)

 T pop() – Retrieves and deletes the topmost element of the stack – Time Complexity : O(1)



STACK:EXAMPLE
Topmost item at position n-1 (Array) Topmost item at position 0 (Linked List)



QUEUE

 It is a linear data structure that follows the FIFO 
(First-In-First-Out) principle

 First added item will be served first

 It has two ends (named as ‘Front’ and ‘Back’) 

 Insertion (enqueue) and deletion (dequeue) 
operations are performed at different sides

 A queue can be implemented using linked list as well 
as an array. However, it shows better performance 
with linked list, which has both head and tail 
references



QUEUE:API

 boolean empty() – Returns whether the queue is empty

 int size() – Returns the size of the queue

 T peek() – Returns a reference to the front element of the queue

 T enqueue(T) – Adds the element at the end of the queue

 T dequeue() – Retrieves and deletes the front element of the queue



QUEUE:EXAMPLE

 It is also possible to provide two methods for each 
of the followings:

 Peek
�peek() – returns null when queue is empty
�element() – throws an exception when queue is empty

 Enqueue
�boolean offer(T) – returns false if it fails to insert
�add(T) – throws an exception if it fails to insert

 Dequeue
� remove() – returns null when queue is empty
�poll() – throws an exception when queue is empty



HEAP

  



HEAP

 It allows you to find the *largest/smallest element in the heap 
in O(1) time

 Extracting the *largest/smallest element from the heap (i.e. 
finding and removing it) takes O(log n) time

 Heap can be implemented using:
�Array (manipulating its indices)
�Nodes with references to their right and left children (not covered)

 The root is stored at index 1, and if a node is at index i, then
� Its left child has index 2i
� Its right child has index 2i+ 1
� Its parent has index i/2

*largest/smallest – largest for Max Heap and smallest for Min Heap



HEAP:INSERTION – O(LOG(N))

 A new item is added as the last element

 Recursive actions (traverse up):
�Compare with parent
�Exchange if it violates the property
�Stops when no other violations or it has reached 

the root



HEAP:HEAPIFY – O(LOG(N))

 Max Heap example

 Heapify(i) – fixes the violation of heap property 
at any position i (assuming that violation is only at 
i`th position)
�Replace an element at i with the largest of children
�Recall Heapify(largestIndex)
�Stops when current item is larger than children (or equal) or 

there`s no other child items



HEAP:EXTRACT_MIN – O(LOG(N))

 Min Heap example

 A root item is replaced with the last element

 Recursive actions:
�Heapify(rootIndex)



HEAP:METHODS
 Public:
�empty() – Returns whether the heap is empty
� size() – Returns the size of the heap
�T getMax() or getMin() – Returns a reference to the root element of the heap
�T extractMax() or extractMin() – Retrieves and deletes the root element of the heap
� insert(T) – Adds the element to the heap

 Private:
�heapify(index) – can perform heapify actions starting from position ‘index’
� traverseUp(index) – can perform traverseUp actions starting from position ‘index’
� leftChildOf(index) – returns the index of the left child item
� rightChildOf(index) – returns the index of the right child item
�parentOf(index) - returns the index of the parent item
� swap(index1, index2) – exchanges two elements by their positions 



HEAP<T EXTENDS 
COMPARABLE<T>>
 There are several comparisons in Heap

 It is not possible to use >, <, <=, etc. operators when dealing with objects (not primitives)

 Comparable<T> is an interface that provides a method obj1.compareTo(obj2), which returns 
a number
�More than 0 when obj1 is greater than obj2
�Less than 0 when obj1 is smaller than obj2
�Exactly 0 when obj1 is equal to obj2

 That comparison is defined in object itself
�Classes that are already Comparable: Integer, Double, String, etc.
� If heap stores objects of user-defined type, then that type should implement Comparable<T> interface



HEAP<T EXTENDS 
COMPARABLE<T>>



LITERATURE

 Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne, Addison-Wesley
�Chapter 1.3, 2.4



GOOD 
LUCK!


