V53

T1L ‘ ASTANAIT
'\ ¥ UNIVERSITY
\\\ o

6 = '-,

LECTURE 4 — STACK, QUEUE

AND HEAP

Askar Khaimuldin
askar.khaimuldin@astanait.edu.kz

CONTENT

A O o

Preface
Stack
Queve

Heap

Heap<T extends Comparable<T>>

PREFACE

Logical Data Structures
Linear (Stack, Queue, etc.)

Non-linear (Tree, Hash-Table, Graph, etc.)

A Linear data structure has data elements arranged in a sequential manner and each member
element is connected to its previous and next element

Data structures where data elements are attached in hierarchical manner are called non-linear
data structures. One element could have several paths to another element

Logical Data Structures are implemented using either an array, a linked list, or a combination of
both

STACK

It is a linear data structure that follows the LIFO
(Last-In-First-Out) principle Push item

R

Last added item will be served first
It has only one end (named as ‘top’)

Insertion and deletion operations are performed at the
top only

A stack can be implemented using linked list as well as an
array. However, extra restrictions must be applied in
order to follow LIFO

)

%
W

ASTANAIT
UNIVERSITY

(\.//

f\ Pop item

STACK:API

boolean empty() — Returns whether the stack is empty — Time Complexity : O(1)

int size() — Returns the size of the stack — Time Complexity : O(1)

T peek() — Returns a reference to the topmost element of the stack — Time Complexity : O(1)
T push(T) — Adds the element at the top of the stack — Time Complexity : O(1)

T pop() — Retrieves and deletes the topmost element of the stack — Time Complexity : O(1)

STACK:EXAMPLE

Topmost item at position n-1 (Array)

Topmost item at position O (Linked List)

I

e el

public T push(T newItem) {
// Add a new item to t
// of the lisL
addLast(newItem);

// Return just added item
return newlItem;

}

public T peek() {
// Get last element
return get(size - 1);

public T pop() {
// Get topmost item
T removingItem = peek();

// Remove topmost iten
removelLast();

(D

// Return just removed item

return removingItem;

1d

|

public T push(T newItem) {
// Add a new item to the front
// of the list
addFront(newItem);

// Return just added item
return newItem;

}

public T peek() {
/ Get front element
y return get(0);

public T pop() {
// Get topmost item
) 3 remov1ngItem = peek();

// Remove topmost item
removeFront();

// Return just removed item
return remov1ngItem

QUEUE

It is a linear data structure that follows the FIFO
(First-In-First-Out) principle

First added item will be served first Back Front

II Dequeue

It has two ends (named as ‘Front’ and ‘Back’)

Insertion (enqueue) and deletion (dequeuve) Enqueue
operations are performed at different sides

A queue can be implemented using linked list as well
as an array. However, it shows better performance
with linked list, which has both head and tail

references

QUEUE:API

boolean empty() — Returns whether the queue is empty

int size() — Returns the size of the queue

T peek() — Returns a reference to the front element of the queue
T enqueue(T) — Adds the element at the end of the queue

T dequeue() — Retrieves and deletes the front element of the queue

QUEUE:EXAMPLE

It is also possible to provide two methods for each
of the followings:

Peek

| peek() — returns null when queue is empty

[l element() — throws an exception when queue is empty

Enqueve
I boolean offer(T) — returns false if it fails to insert

[l add(T) — throws an exception if it fails to insert

Dequeue
I remove() — returns null when queue is empty

I poll() — throws an exception when queue is empty

publlc T peek() {
Peturn get(@)

y it o 7 C

public Tvenqueue(T’newItem) {
addBack (newItem);

X return newItem: .

publlc T dequeue() {

T remov1ngItem é peek();

// Remove topmos e
removeFront();

return removingItem;

HEAP

It is a complete binary tree

level 1 —» 8

* Each level of the tree is filled, except the last one I_I

* Each level is filled from left to right level 2 151 |§|

Types: ~ S s

' ' 7 =N X e

* Min Heap — A[parent[i]] = A[i] level 3 —»)X NP ND,)

* Max Heap — A|parent[i]] < Ali] _ - At ol zuamber isthe storags
level 4 ——m» .8) o)

locationin A[1])
It satisfies the heap-order property

* The data item stored in each node is smaller than or equal to
any of the data items stored in its children (Min Heap)

* The data item stored in each node is greater than or equal to
any of the data items stored in its children (Max Heap)

HEAP

It allows you to find the *largest/smallest element in the heap

in O(1) time @ Min Heap

Extracting the *largest/smallest element from the heap (i.e. @ @
finding and removing it) takes O(log n) time

’// \‘\\ ‘/’/ \\\‘
Heap can be implemented using: @ @ @
[l Array (manipulating its indices)
[INodes with references to their right and left children (not covered)

The root is stored at index 1, and if a node is at index i, then : ; 2) 4 5 6 7 8

[Its left child has index 2i 1 2 3 6

9 5 10 14

[Ilts right child has index 2i+ 1

for Node at i : Left child will be 2i and right child will
[lts parent has index i/2

be at 2i+1 and parent node will be at [i/2].

argest/smallest — largest for Max Heap and smallest for Min Hea
*largest/smallest — largest for Max Heap and smallest for Min Heap

J)

%

ASTANAIT
UNIVERSITY
&

[+ ,‘f"l

W e

%

HEAP:INSERTION — O(LOG(N))

A new item is added as the last element

Recursive actions (traverse up):
| Compare with parent
[|Exchange if it violates the property

[Stops when no other violations or it has reached
the root

V7
NN

S
. ASTANAIT
—. UNIVERSITY
e

HEAP:HEAPIFY — O(LOG(N))

Max Heap example Not following heap property
Call Heapify

Heapify(i) — fixes the violation of heap property
at any position i (assuming that violation is only at
i"th position)

[IReplace an element at i with the largest of children

[IRecall Heapify(largestindex)

[Stops when current item is larger than children (or equal) or
there’s no other child items

HEAP:EXTRACT_MIN — O(LOG(N))

45|76
Min Heap example : extractMin()
A root item is replaced with the last element root = 1
- heapify()
Recursive actions: 5 7

Heapify(rootindex)

Min Heap extract min

HEAP:METHODS

Public:
empty() — Returns whether the heap is empty
size() — Returns the size of the heap
T getMax() or getMin() — Returns a reference to the root element of the heap
T extractMax() or extractMin() — Retrieves and deletes the root element of the heap

insert(T) — Adds the element to the heap

Private:
heapify(index) — can perform heapify actions starting from position ‘index’
traverseUp(index) — can perform traverseUp actions starting from position ‘index’
leftChildOf(index) — returns the index of the left child item
rightChildOf(index) — returns the index of the right child item
parentOf(index) - returns the index of the parent item

swap(index1, index2) — exchanges two elements by their positions

HEAP<T EXTENDS
COMPARABLE<T>>

There are several comparisons in Heap
It is not possible to use >, <, <=, etc. operators when dealing with objects (not primitives)

Comparable<T> is an interface that provides a method objl.compareTo(obj2), which returns
a number

More than O when objl is greater than obj2
Less than O when objl is smaller than obj2

Exactly O when objl is equal to obj2

That comparison is defined in object itself

Classes that are already Comparable: Integer, Double, String, etc.

If heap stores objects of user-defined type, then that type should implement Comparable<T> interface

HEAP<T EXTENDS

COMPARABLE<T>>

public class Student implements Comparable<Student> {
private String name;
private int grade;

7

// other code
// example
@verride
public int compareTo(Student another) {
int diff = this.grade - another.grade;
if (diff == 8)
return this.name.compareTo(another.name);

return diff;

}

public class MyMinHeap<T extends Comparable<T>> {

public static void main(String[] args) {
// other code

MyMinHeap<Student> heap = new MyMinHeap<>();

// another code

private Object[] array;
private int size = 0;
private int capacity = 5;

// other code

public T getMin() {
return get(1); // or get(0)
// depends on the index of root

private T get(int index) { return (T) array[index]; }

public void anyMethodWithCompare(int index) {
T left = get(leftChildInd(index));

T » . : : ﬂﬁX? ;

| if (left.compareTo(right) > 8) {

; /7 another code o

+
private int leftChildInd(int index) { return 2 % index; }

private int rightChildInd(int index) { return 2 % index + 1; }

.
° °

e [o ® o ®
°

LITERATURE

Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne, Addison-Wesley
Chapter 1.3, 2.4

‘ ASTANAIT
a\3 =, UNIVERSITY

[- '.,

