

STRUCTURES LECTURE 4 – STACK, QUEUE AND HEAP

ALGORITHMS AND DATA

Askar Khaimuldin askar.khaimuldin@astanait.edu.kz

CONTENT

- 1. Preface
- 2. Stack
- 3. Queue
- 4. Heap
- 5. Heap<T extends Comparable<T>>

PREFACE

Logical Data Structures **Linear (Stack, Queue, etc.)** Non-linear (Tree, Hash-Table, Graph, etc.)

A Linear data structure has data elements arranged in a **sequential manner** and each member element is connected to its previous and next element

Data structures where data elements are attached in hierarchical manner are called non-linear data structures. One element could have several paths to another element

Logical Data Structures are implemented using either an array, a linked list, or a combination of both

STACK

It is a linear data structure that follows the **LIFO** (Last-In-First-Out) principle

Last added item will be served first

It has **only one** end (named as 'top')

Insertion and deletion operations are performed at the top only

A stack can be implemented using linked list as well as an array. However, extra restrictions must be applied in order to follow LIFO

STACK:API

boolean empty() – Returns whether the stack is empty – Time Complexity : O(1)

int size() – Returns the size of the stack – Time Complexity : $O(1)$

T peek() – Returns a reference to the topmost element of the stack – Time Complexity : $O(1)$

T push(T) – Adds the element at the top of the stack – Time Complexity : $O(1)$

T pop() – Retrieves and deletes the topmost element of the stack – Time Complexity : $O(1)$

STACK:EXAMPLE

```
public T push (T newItem) {
    // Add a new item to the end
    // of the list
    addLast(newItem);
    // Return just added item
    return newItem;
public T peek() \{// Get last element
    return get(size - 1);
public \overline{I} pop() \overline{I}// Get topmost item
    T removing Item = peek();
    // Remove topmost item
    removeLast();
    // Return just removed item
    return removingItem;
```
Topmost item at position n-1 (Array) Topmost item at position 0 (Linked List)

QUEUE

It is a linear data structure that follows the FIFO (First-In-First-Out) principle

First added item will be served first

It has two ends (named as 'Front' and 'Back')

Insertion (enqueue) and deletion (dequeue) operations are performed at different sides

A queue can be implemented using linked list as well as an array. However, it shows better performance with linked list, which has both head and tail references

QUEUE:API

boolean empty() – Returns whether the queue is empty

- int size() Returns the size of the queue
- T peek() Returns a reference to the front element of the queue
- T enqueue(T) Adds the element at the end of the queue
- T dequeue() Retrieves and deletes the front element of the queue

QUEUE:EXAMPLE

It is also possible to provide two methods for each of the followings:

Peek

 \Box peek() – returns null when queue is empty \Box element() – throws an exception when queue is empty

Enqueue

 \Box boolean offer(T) – returns false if it fails to insert \Box add(T) – throws an exception if it fails to insert

Dequeue

 \Box remove() – returns null when queue is empty \Box poll() – throws an exception when queue is empty

HEAP

It is a complete binary tree

- . Each level of the tree is filled, except the last one
- **Each level is filled from left to right**

Types:

- Min Heap $-A[parent[i]] \geq A[i]$
- Max Heap $-A[parent[i]] \leq A[i]$

It satisfies the heap-order property

- The data item stored in each node is smaller than or equal to any of the data items stored in its children (Min Heap)
- . The data item stored in each node is greater than or equal to any of the data items stored in its children (Max Heap)

HEAP

It allows you to find the *largest/smallest element in the heap in O(1) time

Extracting the *largest/smallest element from the heap (i.e. finding and removing it) takes O(log n) time

Heap can be implemented using:

Array (manipulating its indices)

Nodes with references to their right and left children (not covered)

The root is stored at index 1, and if a node is at index i, then \Box Its left child has index 2i

 \Box Its right child has index $2i+1$

Its parent has index i/2

*largest/smallest – largest for Max Heap and smallest for Min Heap

for Node at i: Left child will be 2i and right child will be at 2i+1 and parent node will be at [i/2].

HEAP:INSERTION – O(LOG(N))

A new item is added as the last element

Recursive actions (**traverse up**):

- **Compare with parent**
- Exchange if it violates the **property**
- \square Stops when no other violations or it has reached the root

HEAP:HEAPIFY – O(LOG(N))

Max Heap example

Heapify(i) – fixes the violation of heap property at any position *i* (assuming that violation is only at i`th position)

Replace an element at i with the largest of children

Recall Heapify(largestIndex)

Stops when current item is larger than children (or equal) or there`s no other child items

HEAP:EXTRACT_MIN – O(LOG(N))

Min Heap example

A root item is replaced with the last element

Recursive actions:

 \Box Heapify(rootIndex)

 $4 \mid 5$

 $\overline{7}$

6

extractMin() root $= 1$ \cdot heapify()

Min Heap extract min

HEAP:METHODS

Public:

 \Box empty() – Returns whether the heap is empty

 \Box size() – Returns the size of the heap

 \Box T getMax() or getMin() – Returns a reference to the root element of the heap

 \Box T extractMax() or extractMin() – Retrieves and deletes the root element of the heap

 \Box insert(T) – Adds the element to the heap

Private:

 \Box heapify(index) – can perform heapify actions starting from position 'index'

 \Box traverseUp(index) – can perform traverseUp actions starting from position 'index'

 \Box leftChildOf(index) – returns the index of the left child item

 \Box rightChildOf(index) – returns the index of the right child item

 \square parentOf(index) - returns the index of the parent item

 \Box swap(index 1, index 2) – exchanges two elements by their positions

HEAP<T EXTENDS COMPARABLE<T>>

There are several comparisons in Heap

It is not possible to use $>$, $<$, $<$ =, etc. operators when dealing with objects (not primitives)

Comparable<T> is an interface that provides a method obj1.**compareTo**(obj2), which returns a number

 \Box More than 0 when obj1 is greater than obj2

Less than 0 when obj1 is smaller than $obj2$

Exactly 0 when obj1 is equal to obj2

That comparison is defined in object itself

Classes that are already Comparable: Integer, Double, String, etc.

 \Box If heap stores objects of user-defined type, then that type should implement Comparable $\leq T$ interface

HEAP<T EXTENDS COMPARABLE<T>>public class Student implements Comparable<Student> private Object[] array; private String name; private int size = 0 ; private int grade; private int capacity = 5 ; // other code // other code // example public T getMin() {
return get(1); // or get(0) **MOverride** public int compareTo(Student another) { $int diff = this$ // depends on the index of root if $(diff == 0)$ return this.name.compareTo(another.name); private T get(int index) { return (T) array[index]; } return diff; public void any Method With Compare (int index) { T left = get(leftChildInd(index)); I right = get(rightChildInd(index)); if $(\text{left.compareTo}(right) > 0)$ { public static void main(String[] args) { // another code // other code $MyMinkcap <$ Student> heap = new MyMinHeap \langle); private int leftChildInd(int index) { return $2 * index;$ } // another code ł private int rightChildInd(int index) { return $2 *$ index + 1;

LITERATURE

Algorithms, 4th Edition, by Robert Sedgewick and Kevin Wayne, Addison-Wesley ■Chapter 1.3, 2.4

