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What is heat?

Heat is a form of energy in transit due to a temperature difference. 

What is heat transfer?

Heat transfer is energy that flows from higher to lower level of temperature  without any 

work being performed.

In which way is the amout of transferred heat described?

flow = transport coefficient x potential gradient

• flow: heat flux q [W/m²] or heat transfer rate Q [W]

• coefficient: depends on transfer characteristics

• gradient: difference resp. derivative

Heat Transfer in General

TU Dresden, 23.04.2020 Folie 3 von 50ACCESS – Lecture 2 Heat Transfer



Conduction

• Heat transfer in resting fluids and solids

• Diffusive transport of thermal energy

• Fluids: via moving atoms & molecules 

• Solids: lattice oscillations and movement of unbound 

electrons (in electroconductive materials)

• Description via Fourier‘s law:

Heat Transfer in General: Transfer Types
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Radiation

• Energy transfer between all matters, regardless 

of the form of substance (liquid, gas, solid)

• Description due to wave theory (Maxwell) resp. 

photon emission (Plank)

• Even through vacuum possible, in contrast to 

conduction and convection which require 

presence of material medium

• Radiant heat exchange between two surfaces:

Heat Transfer in General: Transfer Types
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Convection

• Heat transfer in/by moving fluid particles

• 1st transfer via macroscopic resp. bulk motion of the fluid 

(advection)

• 2nd transfer due to random molecular motion (diffusion)

• The faster the fluid motion, the faster the convective heat 

transfer 

• Two types: forced and natural convection

• Description for exchange between fluid and adjoining 

surface:

Heat Transfer in General: Transfer Types
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Microscopic view:

- Molecules and atoms are in mutual interaction

- Particles exchange kinetic energy in chaotic way

- Fast moving molecules collide with slower moving molecules: low-energy 

molecules/atoms absorb energy (temperature level increases) and high-energy 

molecules/atoms release energy (temperature level decreases)

Macroscopic view:

- More kinetic energy is transferred from higher to lower temperature level than 

vice versa 

- System tends towards thermal equilibrium (homogeneous temperature level)

Heat Conduction
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Heat transfer through a solid building construction can be simplified as:

Steady- state which assumes 

• time- constant boundary conditions (indoor conditions, climate 
conditions, heat sources or sinks,…)

• and thus no relevance of thermal storage effects

One- dimensional which assumes

• heat flux perpendicular to the construction surface area
• and thus no relevance of thermal bridge effects 

Solely heat conduction related which assumes

• Convection or radiation transfer can be neglected or described via 
thermal conductivity (e.g. air layers)

Heat Conduction- Simplified Approach
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 Heat Conduction: 1D
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Resulting heat transfer rate (Q) due to heat conduction is:

• Proportional to the length- related temperature difference (temperature 

gradient) 

• Proportional to the surface area

• Depending on solely one material property, the thermal conductivity

Heat conduction: 1D

Total resulting 1-D steady- state 
heat transfer rate is:

Resulting 1-d steady state heat flux 
is:
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Heat Conduction – Thermal Conductivity

d R

R

Influence material thickness:

Influence thermal conductivity:

Material l in W/mK Material l in W/mK

Argon (stat.) 0.016 Cellular Concrete 0.130

Air (stat.) 0.030 Brick 0.750

PS-foam 0.035 Lime sand stone 1.350

Mineral wool 0.040 Concrete 1.450

Calciumsilicate 
insulation

0.055 Sand stone 2.050

Wood 0.110 Steel 40.00

Heat transfer resistance:
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What is Thermal Conductivity?

Thermal conductivity is the ability of a material to conduct heat through it.

It defines the heat transfer rate [W] per distance unit [m] between two plane surfaces and 

per unit temperature difference [K] between these two surfaces. 

What influences the thermal conductivity of a material?

1. Material density

2. Electric conduction

3. Porosity (see density)

4. Temperature

5. Pressure (Fluids)

6. Heat flow direction (anisotropic materials)

Heat Conduction: Thermal Conductivity
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Heat Conduction: Thermal Conductivity

Figure source: M.M.Rathore: Engineering Heat 
Transfer, Jones & Barlett Learning, 2011
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Thermal Conductivity and Porosity
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Thermal Conductivity and Porosity
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High-porous brick (HPB) Low-porous brick (LPB)



 

Thermal Conductivity and Porosity
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Conductivity and Moisture Content
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Moisture Content (Vol-%)

Perlite- Concrete

Gas- Concrete

Foamed slag concrete

Brick

Figures source:  W. M. Willems: Lehrbuch der Bauphysik – Schall, Wärme, Feuchte, 
Licht, Brand, Klima, Springer Vieweg Verlag, Wiesbaden, 2013

 

Moisture Content (Vol-%)

Phenol 
resin foam

Polystyrene 
rigid foam

Polyurethane 
rigid foam



Common building materials 

• Increasing thermal conductivity with temperature

• Impact small, therefore mostly neglected

• Reference values (rated values) for thermal conductivity usually given for 10˚C

• High-temperature values (e.g. insulation heating systems) for 40 ˚C

• Values listed in DIN 4108-4 & ISO 12524

Gases and metals

• For metals increasing or decreasing effect of temperature level

• For gases increasing effect of temperature level

Thermal Conductivity and Temperature
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Metals: 

•  Conductivity is sum of vibration transfer and free electron transfer 

• Free electrons provide huge fraction of entire heat transfer

• Higher temperature causes higher lattice vibrations

• Higher lattice vibrations obstruct free electron transfer

Thermal Conductivity and Temperature
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Figure source: M.M.Rathore: Engineering 
Heat Transfer, Jones & Barlett Learning, 2011

Higher temperature causes 
stronger lattice vibrations, 
oscillations obstruct
flow of free electrons



Gases

• Molecules in continuous random motion

• Velocity of molecules increases with increasing temperature

Thermal Conductivity and Temperature
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Figure source: M.M.Rathore: Engineering Heat Transfer, 
Jones & Barlett Learning, 2011

Higher temperature causes 
higher kinetic energy, faster 
movement, higher impulse



An isotropic material is a material in which the thermal conductivity does not vary with 

the direction of heat flow.

Anisotropic materials show a dependency of 

thermal conductivity on the heat flow direction.

Examples are: wood, sedimentary rocks, metals 

that have undergone heavy cold pressing, fiber-

reinforced composite structures.

TC and Heat Flow Direction
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Figure source: H. Neuhaus: “Lehrbuch des Ingenieurholzbaus”, 
Springer Fachmedien Wiesbaden, 1994



An insulation material shows an adverse dependency between thermal conductivity and 

gross density. 

Example mineral wool: thermal conductivity 

Increases slightly if the gross density increases

For values above about 50 kg/m³. 

BUT

The density increases strongly below a density 

of 50 kg/m³. 

TC and Density
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Figure source: W. M. Willems: “Lehrbuch der Bauphysik – Schall 
Wärme Feuchte Licht Brand Klima”, 7. Auflage,  Springer Vieweg 

Verglag,  Wiesbaden, 2013 Gross density ρ
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strongly increasing 
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 Heat Conduction 1D
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Heat Conduction 1D

T1 T3

Entire temperature 
gradient

Thermal conductivities

Entire heat flux

q

Resulting heat flux for the entire element: 
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Heat Conduction 1D: Surfaces
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Surface temperature of a building construction and air mass temperature of the 

adjacent air mass are not equal because:

• Energy is needed to transfer heat from solid state (solid envelope materials) 

to gaseous state (air mass)

• Convection processes of air masses influence transfer process

• Radiation exchange influences surface- near material layers

These influences can be summarized and simplified as an additional conduction 

resistance layer, the thermal surface resistance 

This resistance is significant and must be considered.

(Values are around 0.05 to 0.5 m²K/W)

Heat conduction - Surface Resistance
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Heat conduction - Surface Resistance

Figure source: www.bradfordinsulation.com.au
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Heat Conduction - Contact Conditions
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Interface temperature of one material layer and interface temperature of the 

adjacent material layer are not equal because:

• Most construction materials are rough and porous and are not in ideal contact 

with the adjacent material

• Interface contains several air gaps that serve as an additional insulation layer 

(low conductivity of air)

This effect can also be summarized and simplified as an additional conduction 

resistance layer, the thermal contact resistance

For building materials, contact resistance can be neglected 

(values are around 0.000005 to 0.0005 m²K/W)

Heat conduction – Contact Resistance
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Example: 1D Steady-State 

30Peggy Freudenberg, Building Physics, ACCESS

Lime Sand Brick
d = 25 cm
λ = 1.3 W/mK

External Plaster
d = 1,2 cm
λ = 1.0 W/mK

Internal Plaster
d = 1 cm
λ = 1.0 W/mK

Insulation
d = 9 cm
λ = 0.045 W/mK

Brick
d = 12 cm
λ = 0.72 W/mK

Heat flux q

θsur,i

θIndoor θOutdoor

θsur,i



The heat flux is the same in all layers (steady state):

Rearranged as follows:

Temperature gradients between layers are added 

Resulting heat flux for a multi-layer construction

Example: 1D Steady-State 
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Scheme for the calculation of the steady state temperature profile of a 

multilayered construction:

1. Calculation heat transmission resistances of all layers

2. Calculation of total transmission resistance and U-value

3. Calculation of heat flux

4. Calculation of temperatures at each boundary

Example: 1D Steady-State 
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Example: 1D Steady-State 

Construction layers Thickness
d in m

T. conductivity
l in W/mK

Thermal resistance
R in m2K/W

Inner heat transfer 
resistance

--- Rsi=0,13

Inner plaster d1 = 0,010 l1 = 1,010 R1=0,0099

Lime sand stone d2 = 0,250 l2 = 1,320 R2=0,1890

Mineral wool insulation d3 = 0,090 l3 = 0,045 R3=2,0000

Brick d4 = 0,120 l4 = 0,720 R4=0,1670

Outer plaster d5 = 0,012 l5 = 1,100 R5=0,0110

Outer heat transfer 
resistance

--- Rse=0,04

Heat transmission resistance R = Rsi + R1 + R2 + R3 + R4 + R5 + Rse 
                                                                     = 2,547  m2K/W
U-value U = 1/R = 0,393    W/m2K
Heat flux through the wall                          = 9,816    W/m2
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Example: 1D Steady-State 

Construction layers Thermal resistance
R in m2K/W

Temperatures θ in °C

Inner heat transfer 
resistance

Rsi=0,13 R0,0=0,13 θi = 20°C

θsi = 18,72°C

θ12 = 18,63°C

θ23 = 16,77°C

θ34 = -2,86°C

θ45 = -4,5°C

θse = -4,61°C

θe = -5°C

Inner plaster R1=0,0099 R0,1=0,1399

Lime sand brick R2=0,1890 R0,2=0,3289
Mineral wool 
insulation

R3=2,0000 R0,3=2,3289

Brick R4=0,1670 R0,4=2,4959
Outer plaster R5=0,0110 R0,5=2,5069
Outer heat transfer 
resistance

Rse=0,04 R0,e=2,5469

Heat flux through the wall = 9,816 W/m2
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In some cases, heat transfer must be seen two-dimensional steady-state:

Steady- state  assumes 

• Time- constant boundary conditions (indoor conditions, climate conditions, 

heat sources or sinks,…)

• And thus no relevance of thermal storage effects

Two- dimensional instead of one- dimensional which assumes

• Heat flux can be described in x- and y-direction

• Thus no relevance of three- dimensional effects

Solely heat conduction related which assumes

• Convection or radiation transfer can be neglected or described via thermal 

conductivity value (e.g. air layers)

Heat Conduction 2D Steady-State 
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Heat Conduction 2D Steady-State 

T1

T2

Temperature gradient 
in x- direction

Temperature gradient 
in y-direction

Resulting heat flux 
Density in each 
direction

?

T3

T4

qy

qx
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Analytical approaches only for simple geometries and boundary conditions

Complex geometries and boundary conditions can be handled with numerical 

methods, which

• Provide solutions for discrete points

• Give only an approximation

Two established numerical methods  are

• Finite Difference Method

• Finite Element Method

Heat Conduction- Simplified 2-D 
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• Each differential equation is approximated by a finite linear difference 

equation

• Construction is divided into equal segments of Δx an Δy 

• Nodal points Px/y represent surrounding area of the size Δx and Δy  

Finite- Difference- Method – 2d Steady St.
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Temperature gradients in x-  direction can be 

transferred into finite difference form

Equations for nodes in x-direction are:

Finite- Difference- Method – 2d Steady St.
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Temperature gradients in y-  direction can 

be transferred into finite difference form in 

the same way

Equation for red points on y-axis are:

Finite- Difference- Method – 2d Steady St.
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Temperature gradient for current (red marked) node is consequently given as:

Finite- Difference- Method – 2d Steady St.
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Applying the 2-dimensional Laplace equation (difference of temperature gradient 

change in both heat flux directions is zero in steady- state case):

Gives this FD solution:

Which can be reduced to an approximate algebraic equation if dx and dy are 

equal:

For given example: temperature at nodal

point equals arithmetic average of the

four adjacent nodes

Finite- Difference- Method – 2d Steady St.
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For the example of control volume method

Shape functions describe change of state in each volume element

Construction is divided by a (triangular) mesh

Control volumes are generated by connecting the centers of adjacent elements

Finite- Element- Method – 2d Steady St.

qy

qx

Control Volume

ElementNode

Triangular Mesh
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Example for two- dimensional heat conduction under steady state conditions:

Key step is integration of general 2D SS heat conduction over two- dimensional 

control volume:

Volume integrals are rewritten as integrals over entire bounding surface of the 

control volume by using Gauss divergence theorem

Finite- Difference- Method – 2d Steady St.

Direction cosine of unit vector of bounding surface in x- direction

Direction cosine of unit vector of bounding surface in y- direction
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Surface Integral can be evaluated by midpoint rule as:

Temperature gradients can be calculated via shape functions Nx of linear 

triangular elements:

Discretized equation for temperature of all control volumes  is then given as:

Resulting system of algebraic equations is incorporated with boundary conditions 

into numerical solver

Finite- Difference- Method – 2d Steady St.

Face area = portion of entire surface
 around control volumeNumber of faces (1 to NI)

Shape Functions
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Numerical solutions of heat conduction problems offer methods to estimate 

temperature distribution within an area or volume, depending on boundary 

conditions (steady state or transient)

Appropriate solution can only be found if boundary conditions are known

There are three common types

of boundary conditions:

1. Defined surface temperatures

2. Defined surface heat flux

3. Specified surface heat balance

Boundary Conditions

?
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Dirichlet boundary condition

Called boundary condition of first type

Temperature at the boundary of the body is 

given as a function of time and position or simply

as a constant value

Description as: 

Boundary Conditions

T
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Neumann boundary condition

Called boundary condition of second type

Heat flux q at the boundary of the body is given

Description as: 

Allows us to determine the partial derivative of

the temperature with respect to outward normal vector n:

Special case: adiabatic boundary conditions:

Boundary Conditions

q
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Cauchy boundary condition

Called boundary condition of third type

Describes correlation between temperature value and derivative of solution

Assumption: heat flux into body surface must equal heat flux out of the body 

surface (d=0, C=0)

For convective transfer given as:

For radiant transfer:

Combined:

Boundary Conditions 

Temperature of the surrounding fluid
(also called T_infinity)

Convective heat transfer 
coefficient
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Therm - overview
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Made up of a finite number of non- overlapping subregions that cover the whole 

region 

Well conditioned finite element mesh requires sophisticated FEM solution method 

knowledge, therefore:

THERM provides automatic mesh generation via Finite Quadtree- algorithm:

Object domain is divided into set of 

squares (hierarchic quadrants tree)

Subdivision is performed until:

• Each quadrant contains only one material

• Size difference between adjacent elements is balanced

• Entire domain is subdivided into triangles resp. quadrilaterals

Therm – Mesh Generation
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Finite element solver: CONRAD 

Derived from public- domain computer programs TOPAZ2D and FACET

Method assumes constant boundary conditions (steady- state)  and physical 

properties

Governing partial differential equation for two- dimensional heat conduction 

including internal heat generation:

Finite- element analysis is based on method of weighted residuals (Galerkin form 

which relies on algebraic shape functions)

Therm – Finite Element Method
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Given the wall example you should solve the following tasks:

1. Model this wall example geometry in THERM 

2. Create all materials which are needed for this construction in THERM material 

library

3. Create all boundary conditions which are needed for this construction in THERM 

boundary conditions library

4. Assign materials and create (F10) and assign boundary conditions to the modeled 

construction

5. Create U-Factor name for y- direction and assign it by double clicking the created 

boundary conditions (vertial inside)

6. Run the calculation (F9) 

7. Check your resulting U-Factor 

8. Get the U-Value for this construction via manual calculation 

9. Compare both U-Values

Therm – Exercise 1D
in
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Compute the following tasks for the same external wall example as an edge 

1. Model wall example geometry in THERM: notice that minimum distance from 

end to inner edge is 1m

2. Assign materials and create (F10) and assign boundary conditions to the 

modeled construction

3. Create U-Factor names for x- direction and assign it to horizontal element, do 

the same for U-Factor name in y-direction

4. Run the calculation (F9) 

5. Check your resulting U-Factor in x- and in y-direction

6. Compare these values with your manual calculation result

Therm – Exercise 2D
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Example: multilayer construction

Lime Sand Brick
d = 25 cm
λ = 1.3 W/mK

External Plaster
d = 1 cm
λ = 1.0 W/mK

Internal Plaster
d = 1 cm
λ = 1.0 W/mK

Insulation
d = 9 cm
λ = 0.045 W/mK

qx

θi=20°C θe=-5°C
αi=20 W/m²K αe=8 W/m²K
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